
Musa Al-hassy http://alhassy.com/java-cheat-sheet May 18, 2023

Java CheatSheet

Modern Java is a strongly-typed, eagery evaluated, case sensative, yet whitespace in-
sensative language. It uses hierarchies of classes/types to structure data, but also has
first-class support for functional-style algebraic datatypes.

Java programs are made up of ‘classes’, classes contain methods, and methods contain
commands. To just try out a snippet of code, we can

⋄ Open a terminal and enter jshell; then enter:

1 + 2 // The jshell lets you try things out!

// Say hello in a fancy way
import javax.swing.*;
JOptionPane.showMessageDialog(new JFrame(), "Hello, World!");

⋄ Alternatively, in IntelliJ, click Tools then Groovy Console to try things out!

⋄ Finally, VSCode allows arbitrary Java code to be sent to a jshell in the back-
ground(!) and it echoes the result in a friendly way.

To be terse, lots of content is not shown in this PDF, but is shown in the HTML version.

The Philosophy of Classes & Interfaces

Real life objects have properties and behaviour. For example, my cat has the properties
of name and age, and amongst its behaviours are sleep and meow. However, an apple
does not have such features. The possible features of an object are understood
when we classify it; e.g., my cat is an animal, whereas an apple is food. In Java, a set
of features is known as a class and objects having those features are called “objects of
that class”. Just as int is the type of the value 12, we say a class is a type of an object.

We tend to think in (disjoint, hierarchical) categories; for example, in my library, a book
can be found in one section, either “Sports” or “History” or “Trees”. So where should
books on the history of football be located? Or books on the history of trees? My library
places such books under “Sports”, and “Tree” respecively, but then adds a “historical”
tag to them. Likewise, in Java, to say different kinds of things have a feature in
common, we “tag” them with an interface. (Real life tagging is a also known as
multi-class-ificiation.)

Java’s Main Organisational Mechanisms

With state Without state
Attributes & properties class record
Partial implementations abstract class interface

Primitive Objects

For performance reasons, there are a handful of types whose values are created by lit-
erals; i.e., “What you see is what you get”. (As such, primitives are a basic building block
which cannot be broken apart; whereas non-primitives (aka references) are made-up from
primitives and other references.) For example, to create a value of int we simply write
5.

There are no instance methods on literals; only a handful of operator methods. For exam-
ple, we cannot write 2.pow(3) to compute 2³, but instead must write Math.pow(2, 3).
Finally, variables of primitive types have default values when not initialised whereas ob-
ject types default to null —note: null is a value of all object types, but not of primitive
types.

// Declare a new object type
class Person { String name; }

Person obj; // ≈ null (OBJECT)
int prim; // ≈ 0 (PRIMITIVE)

// Primitives are created as literals
prim = 1; // ≈ 1

// Objects are created with “new”
obj = new Person(); // ≈ a reference,

// like: Person@66048bfd

// Primitives are identified by
// thier literal shape
assert prim == 1;

// Objects are identified by
/// references to their memory
// locations (not syntax shape!)

assert obj != new Person();

// Primitives copy values
int primCopy = prim; // ≈ 1

/// Objects copy references
Person objCopy = obj;

// ≈ a reference, like: Person@66048bfd

// Changing primitive copy has
// no impact on original
primCopy = 123;
assert prim == 1;

// Changing object copy also
// changes the original!
assert obj.name == null;
objCopy.name = "woah"; // Alter copy!
// Original is altered!
assert obj.name.equals("woah");

Properties and methods have separate namespaces

Properties and methods have separate namespaces —“Java is a Lisp-2 Language”. Below
we use the name plus1 in two different definitional roles. Which one we want to refer to
depends on whether we use "dot-notation" with or without parenthesis: The parentheis
indicate we want to use the method.

class SameNameNoProblem {
public static int plus1(int x){ return x + 1; } // Method!
public static String plus1 = "+1"; // Property!

}

class ElseWhere {
String pretty = SameNameNoProblem.plus1;
Integer three = SameNameNoProblem.plus1(2);

}

The consequence of different namespaces are
1. Use apply to call functions bound to variables.
2. Refer to functions outside of function calls by using a double colon, ::.

Let’s discuss both of these now...

1

http://alhassy.com/java-cheat-sheet
http://alhassy.com/making-vscode-itself-a-java-repl.html
http://alhassy.com/java-cheat-sheet.pdf
https://alhassy.com/java-cheat-sheet


Anonymous functions: (arg1, ..., argn) → bodyHere .

.
Functions are formed with the “→” notation and used with “apply”

// define, then invoke later on
Function<Integer, Integer> f = x -> x * 2;

f.apply(3) // ⇒ 6
// f(3) // invalid!

// define and immediately invoke
((Function<Integer, Integer>) x -> x * 2).apply(3);

// define from a method reference, using “::”
Function<Integer, Integer> f = SameNameNoProblem::plus1;

Let’s make a method that takes anonymous functions, and use it

// Recursion with the ‘tri’angle numbers: tri(f, n) = Σ
n
i=0 f(i).

public static int tri(Function<Integer, Integer> f, int n) {
return n <= 0 ? 0 : f.apply(n) + tri(f, n - 1);

}

tri(x -> x / 2, 100); // ⇒ Σ
100

i=0 i/2 = 2500

// Using the standard “do nothing” library function
tri(Function.identity(), 100); // ⇒ Σ

100
i=0 i = 5050

Exercise! Why does the following code work?

int tri = 100;
tri(Function.identity(), tri); // ⇒ 5050

Function<Integer, Integer> tri = x -> x;
tri(tri, 100); // ⇒ 5050

In Java, everything is an object! (Ignoring primitives, which exist for the purposes of
efficiency!) As such, functions are also objects! Which means, they must have a type:
Either some class (or some interface), but which one? The arrow literal notation x -> e
is a short-hand for an implementation of an interface with one abstract method. . .

Lambdas are a shorthand for classes that implement functional interfaces

Let’s take a more theoretical look at anonymous functions.

Functional Interfaces

A lambda expression is a (shorthand) implementation of the only abstract method in a
functional interface ——–which is an interface that has exactly one abstract method, and
possibly many default methods.

For example, the following interface is a functional interface: It has only one abstract
method.

public interface Predicate<T> {

boolean test(T t); // This is the abstract method

// Other non-abstract methods.
default Predicate<T> and(Predicate<? super T> other) { ... }
// Example usage: nonNull.and(nonEmpty).and(shorterThan5)
static <T> Predicate<T> isEqual(T target) {...}
// Example usage: Predicate.isEqual("Duke") is a new predicate to use.

}

Optionally, to ensure that this is indeed a functional interface, i.e., it has only one ab-
stract method, we can place @FunctionalInterface above its declaration. Then the
complier will check our intention for us.

The Type of a Lambda

Anyhow, since a lambda is a shorthand implementation of an interface, this means that
what you can do with a lambda depenends on the interface it’s impementing!

As such, when you see a lambda it’s important to know it’s type is not "just a function"!
This mean to run/apply/execute a lambda variable you need to remember that the
variable is technically an object implementing a specific functional interface, which has
a single named abstract method (which is implemented by the lambda) and so we need
to invoke that method on our lambda variable to actually run the lambda. For example,

Predicate<String> f = s -> s.length() == 3; // Make a lambda variable
boolean isLength3String = f.test("hola"); // Actually invoke it.

Since different lambdas may implement different interfaces, the actually method to run
the lambda will likely be different! Moreover, you can invoke any method on the interface
that the lambda is implementing. After-all, a lambda is an object; not just a function.

Moreover, Function has useful methods: Such as andThen for composing functions se-
quentially, and Function.identity for the do-nothing function.

Common Java Functional Types

Anyhow, Java has ~40 functional interfaces, which are essentially useful variations around
the following 4:

Class runner Description & example
Supplier<T> get Makes objects for us; e.g., () -> "Hello"! .
Consumer<T> accept Does stuff with our objects, returning void;

e.g., s -> System.out.println(s) .
Predicate<T> test Tests our object for some property, returning a boolean

e.g., s -> s.length() == 3
Function<T apply Takes our object and gives us a new one; e.g., s -> s.length()

For example, C::new is a supplier for the class C, and the forEach method on iterables
actually uses a consumer lambda, and a supplier can be used to reuse streams (discussed
below).

2

https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/function/package-summary.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/lang/Iterable.html#forEach(java.util.function.Consumer)
https://stackoverflow.com/questions/36255007/is-there-any-way-to-reuse-a-stream


The remaining Java functional interfaces are variations on these 4 that are optimised
for primitive types, or have different number of inputs as functions. For example,
UnaryOperator<T> is essentially Function<T, T>, and BiFunction<A, B, C> is essen-
tially Function<A, Function<B, C>> ———not equivalent, but essentially the same
thing.

⋄ As another example, Java has a TriConsumer which is the type of functions that
have 3 inputs and no outputs —since Tri means 3, as in tricycle.

Eta Reduction: Writing Lambda Expressions as Method References

Lambdas can sometimes be simplified by using method reference:
Method type
Static (x, ys) → τ.f(x, ys) ≈ τ :: f
Instance (x, ys) → x.f(ys) ≈ τ :: f , where τ is the type of x
Constructor args → new τ<A>(args) ≈ τ<A>::new

For example, (sentence, word) -> sentence.indexOf(word) is the same as
String::indexOf. Likewise, (a, b) -> Integer.max(a, b) is just Integer::max.

⋄ Note that a class name τ might be qualified; e.g., x -> System.out.println(x)
is just System.out::println.

Variable Bindings

Let’s declare some new names, and assert what we know about them.
Integer x, y = 1, z;

assert x == null && y == 1 && z == null;

τ x0 = v0, ..., xn = vn; introduces n-new names xi each having value vi of type τ .
⋄ The vi are optional, defaulting to 0, false, ’\000’, null for numbers,

booleans, characters, and object types, respectively.
⋄ Later we use xi = wi; to update the name xi to refer to a new value wi.

There are a variety of update statements:
Suppose τ is the type of x then,

Augment: x ⊕= y ≈ x = (τ)(x ⊕ y)
Increment: x++ ≈ x += 1)
Decrement: x-- ≈ x -= 1)

The operators -- and ++ can appear before
or after a name: Suppose S(x) is a state-
ment mentioning the name x, then

S(x++) ≈ S(x); x += 1
S(++x) ≈ x += 1; S(x)

Since compound assignment is really an update with a cast , there could be unexpected
behaviour when x and y are not both ints/floats.

⋄ If we place the keyword final before the type τ , then the names are constant:
They can appear only once on the right side of an ‘=’, and any further occurrences
(i.e., to change their values) crash the program. final int x = 1, y; y = 3;
is fine, but changing the second y to an x fails.

⋄ We may use var x = v, for only one declaration, to avoid writing the name of the
type τ (which may be lengthy). Java then infers the type by inspecting the shape
of v.

⋄ Chained assignments associate to the right:
a += b /= 2 * ++c; ≈ a += (b /= (2 * ++c));

(The left side of an “=”, or “⊕=”, must a single name!)

Strings

Any pair of matching double-quotes will produce a string literal —whereas single-quote
around a single character produce a character value. For multi-line strings, use triple
quotes, """, to produce text blocks.

String interpolation can be done with String.format using %s placeholders. For ad-
vanced interpolation, such as positional placeholders, use MessageFormat.

String.format("Half of 100 is %s", 100 / 2) // ⇒ "Half of 100 is 50"
⋄ s.repeat(n) ≈ Get a new string by gluing n-copies of the string ∫ .
⋄ s.toUpperCase() and s.toLowerCase() to change case.
⋄ Trim removes spaces, newlines, tabs, and other whitespace from the start and end

of a string. E.g., " okay \n ".trim().equals("okay")
⋄ s.length() is the number of characters in the string.
⋄ s.isEmpty() ≡ s.length() == 0
⋄ s.isBlank() ≡ s.trim().isEmpty()
⋄ String.valueOf(x) gets a string representation of anything x.
⋄ s.concat(t) glues together two strings into one longer string; i.e., s + t.

Equality

⋄ In general, ‘==’ is used to check two primitives for equality, whereas .equals is
used to check if two objects are equal.

⋄ The equality operator ‘==’ means “two things are indistinguishable: They evaluate
to the same literal value, or refer to the same place in memory”.

⋄ As a method, .equals can be redefined to obtain a suitable notion of equality
between objects; e.g., “two people are the same if they have the same name (re-
gardless of anything else)”. If it’s not redefined, .equals behaves the same as
‘==’. In contrast, Java does not support operator overloading and so ‘==’ cannot
be redefined.

⋄ For strings, ‘==’ and .equals behave differently: new String("x") == new String("x")
is false, but new String("x").equals(new String("x")) is true! The first checks
that two things refer to the same place in memory, the second checks that they
have the same letters in the same order.

◦ If we want this kind of “two objects are equal when they have the same con-
tents” behaviour, we can get it for free by using records instead of classes.

Arithmetic

In addition to the standard arithmetic operations, we have Math.max(x, y) that takes
two numbers and gives the largest; likewise Math.min(x, y). Other common functions
include Math.sqrt, Math.ceil, Math.round, Math.abs, and Math.random() which re-
turns a random number between 0 and 1. Also, use % for remainder after division; e.g., n
% 10 is the right-most digit of integer n, and n % 2 == 0 exactly when n is even, and d
% 1 gives the decimal points of a floating point number d, and finally: If d is the index
of the current weekday (0..6), then d + 13 % 7 is the weekday 13-days from today.

// Scientific notation: xey ≈ x × 10y

assert 1.2e3 == 1.2 * Math.pow(10, 3)
// random integer x with 4 ≤ x < 99
var x = new Random().nextInt(4, 99);

3

https://docs.oracle.com/javase/specs/jls/se11/html/jls-15.html#jls-15.26.2
https://docs.oracle.com/javase/8/docs/api/java/text/MessageFormat.html


Sum the digits of the integer n = 31485

int n = 31485;
int sum = 0;
while (n % 10 != 0) { sum += n % 10; n /= 10; }
assert sum == 3 + 1 + 4 + 8 + 5;

A more elegant, “functional style”, solution:

String.valueOf(n).chars().map(c -> c - '0').sum();

The chars() methods returns a stream of integers (Java characters are really
just integers). Likewise, IntStream.range(0, 20) makes a sequence of numbers
that we can then map over, then sum, min, max, average.

Collections and Streams

Collections are types that hold a bunch of similar data: Lists, Sets, and Maps are the
most popular. Streams are pipelines for altering collections: Usually one has a collection,
converts it to a stream by invoking .stream(), then performs map and filter methods,
etc, then “collects” (i.e., runs the stream pipeline to get an actual collection value back)
the result.

Lists are ordered collections, that care about multiplicity. Lists are made with
List.of(x0, x1, ..., xn). Indexing, xs.get(i), yields the i-th element from the start;
i.e., the number of items to skip; whence xs.get(0) is the first element.

Sets are unordered collections, that ignore multiplicity. Sets are made with
Set.of(x0, x1, ..., xn).

Maps are pairs of ‘keys’ along with ‘values’. Map<K, V> is essentially the class
of objects that have no methods but instead have an arbitary number of properties
(the ‘keys’ of type K), where each property has a value of type V. Maps are made with
Map.of(k0, v0, ..., k10, v10) by explicitly declaraing keys and their associated val-
ues. The method M.get(k) returns the value to which the specified key k is mapped, or
null if the map M contains no mapping for the key. Maps have an entrySet() method
that gives a set of key-value pairs, which can then be converted to a stream, if need be.

Other collection methods include, for a collection instance C:
⋄ C.size() is the number of elements in the collection
⋄ C.isEmpty() ≡ C.size() == 0
⋄ C.contains(e) ≡ C.stream().filter(x -> x.equals(e)).count() > 0
⋄ Collections.fill(L, e) ∼= L.stream().map(_ -> e).toList(); i.e., copy list

L but replace all elements with e.
⋄ Collections.frequency(C, e) counts how many times e occurs in a collection.
⋄ Collections.max(C) is the largest value in a collection; likewise min.
⋄ Collections.nCopies(n, e) is a list of n copies of e.

Stream<τ> methods
⋄ Stream.of(x0, ..., xn) makes a stream of data, of type τ , ready to be acted

on.
⋄ s.map(f) changes the elements according to a function f : τ → τ ′.

◦ s.flatMap(f) transforms each element into a stream since f : τ →
Stream < τ ′ >, then the resulting stream-of-streams is flattened into a
single sequential stream.

◦ As such, to merge a streams of streams just invoke .flatMap(s -> s).
⋄ s.filter(p) keeps only the elements that satisfy property p
⋄ s.count() is the number of elements in the stream
⋄ s.allMatch(p) tests if all elements satisfy the predicate p
⋄ s.anyMatch(p) tests if any element satisfies p
⋄ s.noneMatch(p) ≡ s.allMatch(p.negate())
⋄ s.distinct() drops all duplicates
⋄ s.findFirst() returns an Optional<τ> denoting the first element, if any.
⋄ s.forEach(a) to loop over the elements and perform action a.

◦ If you want to do some action, and get the stream s back for further use,
then use s.peek(a).

Generics

Java only lets us return a single value from a method, what if we want to return
a pair of values? Easy, let’s declare record Pair(Object first, Object second) { }
and then return Pair. This solution has the same problem as methods that just return
Object: It communicates essentially no information —after all, everything is an object!—
and so requires dangerous casts to be useful, and the compiler wont help me avoid type
mistakes.

record Pair(Object first, Object second) { }

// This should return an integer and a string
Pair myMethod() { return new Pair("1", "hello"); } // Oops, I made a typo!

int num = (int) (myMethod().first()); // BOOM!

It would be better if we could say “this method returns a pair of an integer and a string”,
for example. We can do just that with generics!

record Pair<A, B>(A first, B second) { }

Pair<Integer, String> myMethod() { return new Pair<>(1, "hello"); }

int num = myMethod().first();

This approach communicates to the compiler my intentions and so the compiler ensures
I don’t make any silly typos. Such good communication also means no dangerous casts
are required.

We can use the new type in three ways:
Pair<A, B> explicitly providing the types we want to use Pair with
Pair<> letting Java infer, guess, the types for Pair by how we use it
Pair defaulting the types to all be Object

The final option is not recommended, since it looses type information. It’s only allowed
since older versions of Java do not have type parameters and so, at run time, all type
parameters are ‘erased’. That is, type parameters only exist at compile time and so cannot
be inspected/observed at run-time.

4

https://download.java.net/java/early_access/panama/docs/api/java.base/java/util/function/Predicate.html

