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Abstract

Structuring-mechanisms, such as Java’s package and Haskell’s module, are often af-
terthought secondary citizens whose primary purpose is to act as namespace delimiters, while
relatively more effort is given to their abstraction encapsulation counterparts, e.g., Java’s
classes and Haskell’s typeclasses. A dependently-typed language (DTL) is a typed language
where we can write types that depend on terms ; thereby blurring conventional distinctions
between a variety of concepts. In contrast, languages with non-dependent type systems
tend to distinguish external vs. internal structuring-mechanisms —as in Java’s package for
namespacing vs. class for abstraction encapsulation— with more dedicated attention and
power for the internal case —as it is expressible within the type theory.

To our knowledge, relatively few languages —such as OCaml, Maude, and the B Method—
allow for the manipulation of external structuring-mechanisms as they do for internal ones.
Sufficiently expressive type systems, such as those of dependently typed languages, allow for
the internalisation of many concepts thereby conflating a number of traditional programming
notions. Since DTLs permit types that depend on terms, the types may require non-trivial
term calculation in order to be determined. Languages without such expressive type systems
necessitate certain constraints on its constructs according to their intended usage. It is
not clear whether such constraints have been brought to more expressive languages out of
necessity or out of convention. Hence we propose a systematic exploration of the structuring-
mechanism design space for dependently typed languages to understand what are the module
systems for DTLs?

First-class structuring-mechanisms have values and types of their own which need to be
subject to manipulation by the user, so it is reasonable to consider manipulation combinators
for them from the beginning. Such combinators would correspond to the many generic opera-
tions that one naturally wants to perform on structuring-mechanisms —e.g., combining them,
hiding components, renaming components— some of which, in the external case, are impos-
sible to perform in any DTL without resorting to third-party tools for pre-processing. Our
aim is to provide a sound footing for systems of structuring-mechanisms so that structuring-
mechanisms become another common feature in dependently typed languages. An important
contribution of this work will be an implementation, as an extension of the current Agda im-
plementation, of our module combinators —which we hope to be accepted into a future
release of Agda.

If anything, our aim is practical —to save developers from ad hoc copy-paste preprocessing
hacks.

—Source: https://github.com/alhassy/next-700-module-systems-proposal—
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Chapter 1

Introduction —The Proposal’s “Story”

In this chapter we aim to present the narrative that demonstrates the distinction between
what can currently be accomplished and what is desired when working with composition of
software units. We arrive at the observation that packaging concepts differ only in their use
–for example, a typeclass and a record are both sequences of declarations that only differ
in the former used for polymorphism with instance search whereas the latter is used as a
structure grouping related items together. In turn, we are led to propose that the various
packaging concepts ought to have a uniform syntax. Moreover, since records are a particular
notion of packaging, the commitment to syntactic similarity gives rise to a homoiconic nature
to the host language.

Within this work we refer to a simple type theory as a language that contains typed lambda
terms for terms and formuale; if in addition it contains typed lambda terms for ‘proofs’ —
which are members of types that could be interpreted as propositions— then we say it is a
dependently-typed language, or ‘DTL’ for short. More precisely, if type formation is indexed,
i.e., types may depend on a context, then we have a DTL. With the exception of declarations
and ephemeral notions, nearly everything in a DTL is a typed lambda term. Just as Lisp’s
homoiconic nature blurs data and code leaving it not as a language with primitives but
rather a language with meta-primitives, so too the lack of distinction between term and type
lends itself to generic and uniform concepts in DTLs thereby leaving no syntactic distinction
between a constructive proof and an algorithm.

The sections below explore our primary observation, which is discussed further later on in
chapter 3 as preliminary research. Section 1 demonstrates the variety of languages present in
a single system which are conflated in a DTL, section 2 discusses that such conflation should
by necessity apply to notions of packaging, and section 3 concludes with proposed work to
ensure that happens.

3

https://en.wikipedia.org/wiki/Homoiconicity


1.1 A Language Has Many Tongues

A programming language is actually many languages working together.

The most basic of imperative languages comes with a notion of ‘statement’ that is exe-
cuted by the computer to alter ‘state’ and a notion of ‘value’ that can be assigned to memory
locations. Statements may be sequenced or looped, whereas values may be added or multi-
plied, for example. In general, the operations on one linguistic category cannot be applied to
the other. Unfortunately, a rigid separation between the two sub-languages means that bi-
nary choice, for example, conventionally invites two notations with identical semantics —e.g.;
in C one writes if (cond) clause1 else clause2 for statements but must use the notation
cond?term1:term2 for values. Hence, there are value and statement languages.

Let us continue using the C language for our examples since it is so ubiquitous and
has influenced many languages. Such a choice has the benefit of referring to a concrete
language, rather than speaking in vague generalities. Besides Agda –a language mentioned
throughout the proposal– we shall also refer to Haskell as a representative of the functional
side of programming. For example, in Haskell there is no distinction between values and
statements —the latter being a particular instance of the former— and so it uses the same
notation if_then_else_ for both. However, in practice, statements in Haskell are more
pragmatically used as a body of a do block for which the rules of conditionals and local
variables change –hence, Haskell is not as uniform as it initially appears.

In C, one declares an integer value by int x; but a value of a user-defined type T is
declared struct T x; since, for simplicity, one may think of C having an array named struct
that contains the definitions of user-defined types T and the notation struct T acts as an
array access. Since this is a clunky notation, we can provide an alias using the declaration
typedef existing-name new-name;. Unfortunately, the existing name must necessarily be
a type, such as struct T or int, and cannot be an arbitrary term. One must use #define to
produce term aliases, which are handled by the C preprocessor, which also provides #include
to import existing libraries. Hence, the type language is distinct from the libraries language,
which is part of the preprocessor language.

In contrast, Haskell has a pragma language for enabling certain features of the compiler.
Unlike C, it has an interface language using typeclass-es which differs from its module
language [DJH; SHH01; She] since the former’s names may be qualified by the names of the
latter but not the other way around. In turn, typeclass names may be used as constraints
on types, but not so with module names. It may be argued that this interface language is
part of the type language, but it is sufficiently different that it could be thought of as its
own language [Ler00] —for example, it comes with keywords class, instance, => that
can only appear in special phrases. In addition, by default, variable declarations are the
same for built-in and user-defined types –whereas C requires using typedef to mimic such
behaviour. However, Haskell distinguishes between term and type aliases. In contrast, Agda
treats aliasing as nothing more than a normal definition.
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Certain application domains require high degrees of confidence in the correctness of soft-
ware. Such program verification settings may thus have an additional specification language.
For C, perhaps the most popular is the ANSI C Specification Language, ACSL [BP10]. Be-
sides the C types, ACSL provides a type integer for specifications referring to unbounded
integers as well as numerous other notions and notations not part of the C language. Hence,
the specification language generally differs from the implementation language. In contrast,
Haskell’s specification are generally [Hal+] in comments but its relative Agda allows specifi-
cations to occur at the type level.

Whether programs actually meet their specifications ultimately requires a proof language.
For example, using the Frama-C tool [VME18], ACSL specifications can be supported by
Isabelle or Coq proofs. In contrast, being dependently-typed, Agda allows us to use the
implementation language also as a proof language —the only distinction is a shift in our
perspective; the syntax is the same. Tools such as Idris and Coq come with ‘tactics’ —
algorithms which one may invoke to produce proofs— and may combine them using specific
operations that only act on tactics, whence yet another tongue.

Hence, even the simplest of programming languages contain the first three of the following
sub-languages –types may be treated at runtime.

1. Expression language;

2. Statement, or control flow, language;

3. Type language;

4. Specification language;

5. Proof language;

6. Module language;

7. Meta-programming languages —including Coq tactics, C preprocessor, Haskell prag-
mas, Template Haskell’s various quotation brackets [x| ... ], Idris directives, etc.

As briefly discussed, the first five languages telescope down into one uniform language
within the dependently-typed language Agda. So why not the module language?

1.2 Needless Distinctions for Containers

Computing is compositionality. Large mind-bending software developments are formed by
composing smaller, much more manageable, pieces together. How? In the previous section
we outlined a number of languages equipped with term constructors, yet we did not indicate
which were more primitive and which could be derived.
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The methods currently utilised are ‘ad hoc’, e.g., “dump the contents of packages into a
new \"uber package”. What about when the packages contain conflicting names? “Make an
uber package with field names for each package’s contents”. What about viewing the new
uber package as a hierarchy of its packages? “Make conversion methods between the two
representations.” —This should be mechanically derivable.

In general, there are special-purpose constructs specifically for working with packages of
“usual”, or “day-to-day” expression- or statement-level code. That is, a language for working
with containers whose contents live in another language. This forces the users to think of
these constructs as rare notions that are rarely needed —since they belong to an ephemeral
language. They are only useful when connecting packages together and otherwise need not
be learned.

When working with mutually dependent modules, a simple workaround to cyclic type-
checking and loading is to create an interface file containing the declarations that dependents
require. To mitigate such error-prone duplication of declarations, one may utilise literate
programming to tangle the declarations to multiple files —the actual parent module and the
interface module. This was the situation with Haskell before its recent module signature
mechanism [Kil+14]. Being a purely functional language, it is unsurprising that Haskell
treats nested record field updates awkwardly: Where a C-like language may have
a.b.c := d, Haskell requires a { b = b a {c = d}} which necessarily has field names b,
c polluting the global function namespace as field projections. Since a record is a possibly
deeply nested list of declarations, it is trivial to flatten such a list to mechanically generate
the names “a-b-c” —since the dot is reserved— unfortunately this is not possible in the
core language thereby forcing users to employ ‘lenses’ to generate such accessors by compile-
time meta-programming. In the setting of DTLs, records in the form of nested Σ-types tend
to have tremendously poor performance —in existing implementations of Coq [GCS14] and
Agda [Per17], the culprit generally being projections. More generally, what if we wanted to
do something with packages that the host language does not support? “Use a pre-processor,
approximate packaging at a different language level, or simply settle with what you have.”

Main Observation Packages, modules, theories, contexts, traits, typeclasses, interfaces,
what have you all boil down to dependent records at the end of the day and really differ in
how they are used or implemented. At the end of section 3 we demonstrate various distinct
presentations of such notions of packaging arising from a single package declaration.

1.3 Proposed Contributions

The proposed thesis investigates the current state of the art of grouping mechanisms
—sometimes referred to as modules or packages—, their shortcomings, and a route to imple-
menting candidate solutions based upon a dependently-typed language.

The introduction of first-class structuring mechanisms drastically changes the situation by
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allowing the composition and manipulation of structuring mechanisms within the language
itself. Granted, languages providing combinators for structuring mechanisms are not new;
e.g., such notions already exist for Full Maude [DM07] and B [BGL06]. The former is closer
in spirit to our work, but it differs from ours in that it is based on a reflective logic: A logic
where certain aspects of its metatheory can be faithfully represented within the logic itself.
It may well be that the meta-theory of our effort may involve reflection, yet our distinction is
that our aim is to form powerful module system features for Dependently-Typed Languages
(DTLs).

To the uninitiated, the shift to DTLs may not appear useful, or at least would not
differ much from existing approaches. We believe otherwise; indeed, in programming and,
more generally, in mathematics, there are three —below: 1, 2a, 2b— essentially equivalent
perspectives to understanding a concept. Even though they are equivalent, each perspective
has prompted numerous programming languages; as such, the equivalence does not make the
selection of a perspective irrelevant. The perspectives are as follows:

1. “Point-wise” or “Constituent-Based”: A concept is understood by studying the concepts
it is “made out of”. Common examples include:

� A mathematical set is determined by the elements it contains.

� A method is determined by the sequence of statements or expressions it is com-
posed from.

� A package —such as a record or data declaration— is determined by its compo-
nents, which may be thought of as fields or constructors.

Object-oriented programming is based on the notion of inheritance which informs us
of “has a” and “is a” relationships.

2. “Point-free” or Relationship Based: A concept is understood by its relationship to other
concepts in the domain of discourse. This approach comes into two sub-classifications:

(a) “First Class Citizen” or “Concept as Data”: The concept is treated as a static
entity and is identified by applying operations onto it in order to observe its
nature. Common examples include:

� A singleton set is a set whose cardinality is 1.
� A method, in any coding language, is a value with the ability to act on other

values of a particular type.
� A renaming scheme to provide different names for a given package; more

generally, applicative modules.

(b) “Second Class Citizen” or “Concept as Method”: The concept is treated as a dy-
namic entity that is fed input stimuli and is understood by its emitted observa-
tional output. Common examples include:

� A singleton set is a set for which there is a unique mapping to it from any
other set. Input any set, obtain a map from it to the singleton set.
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� A method, in any coding language, is unique up to observational equality:
Feed it arguments, check its behaviour. Realistically, one may want to also
consider efficiency matters.
� Generative modules as in the new keyword from Object oriented programming:

Basic construction arguments are provided and a container object is produced.

Observing such a sub-classification as distinct led to traditional structural programming
languages, whereas blurring the distinction somewhat led to functional programming.

A simple selection of equivalent perspectives leads to wholly distinct paradigms of thought.
It is with this idea that we propose an implementation of first-class grouping mechanisms
in a dependently typed language —theories have been proposed, on paper, but as just dis-
cussed actual design decisions may have challenging impacts on the overall system. Most
importantly, this is a requirements driven approach to coherent modularisation constructs in
dependently typed languages.

Later on, we shall demonstrate that with a sufficiently expressive type system, a num-
ber of traditional programming notions regarding ‘packaging up data’ become conflated —in
particular: Records and modules; which for the most part can all be thought of as “depen-
dent products with named components”. Languages without such expressive type systems
necessitate certain constraints on these concepts according to their intended usage —e.g.,
no multiple inheritance for Java’s classes and only one instance for Haskell’s typeclasses. It
is not clear whether such constraints have been brought to more expressive languages out
of necessity, convention, or convenience. Hence we propose a systematic exploration of the
structuring-mechanism design space for DTLs as a starting point for the design of an ap-
propriate dependently-typed module system. Along the way, we intend to provide a set of
atomic combinators that suffice as building blocks for generally desirable features of grouping
mechanisms, and moreover we intend to provide an analyses of their interactions.

That is, we want to look at the edge cases of the design space for structuring-mechanism
systems, not only what is considered ‘convenient’ or ‘conventional’. Along the way, we will
undoubtedly encounter ‘useless’ or non-feasible approaches. The systems we intend to con-
sider would account for, say, module structures with intrinsic types —hence treating them
as first class concepts— so that our examination is based on sound principles.

Understandably, some of the traditional constraints have to do with implementations. For
example, a Haskell typeclass is generally implemented as a dictionary that can, for the most
part, be inlined whereas a record is, in some languages, a contiguous memory block: They
can be identified in a DTL, but their uses force different implementation methodologies and
consequently they are segregated under different names.

In summary, the proposed research is to build upon the existing state of module systems
[DCH03] in a dependently-typed setting [Mac86] which is substantiated by developing an
extension to a compiler. The intended outcomes include:

1. A clean module system for DTLs that treats modules uniformly as any other value
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type.

2. A variety of use-cases contrasting the resulting system with previous approaches.

3. A module system that enables rather than inhibits efficiency.

4. Demonstrate that module features traditionally handled using meta-programming can
be brought to the data-value level; thereby not actually requiring the immense power
and complexity of meta-programming.

Most importantly, we intend to implement our theory to obtain validation that it ‘works’.

1.4 Overview of the Remaining Chapters

When a programming languages does not provide sufficiently expressive primitives for a
concept —such as typeclass derivation [BLS18]— users use some form of pre-processing to
accomplish their tasks. In our case, the insufficient primitives are regarding the creation
and manipulation of theories —i.e., records, classes, packages, modules. In section 3, we
will demonstrate an undisciplined prototype that clarified the requirements of our envisioned
system. Even though the prototype appears to be metaprogramming, the aim is not to force
users interested in manipulating packages to worry about the intricacies of representations;
that is, the end goal is to avoid metaprogramming —which is an over-glorified form of prepro-
cessing. The goal is to use a dependently-typed language to implement the ‘missing’ module
system features directly inside the language.

The remainder of the thesis proposal is organised as follows.

� Chapter II discusses what is expected of modularisation mechanisms, how they could
be simulated, their interdefinability in Agda, and discuss a theoretical basis for modu-
larisation.

� Chapter III outlines missing features from current modularisation systems, their use
cases, and provides a checklist for a candidate module system for DTLs.

� Chapter IV discusses issues regarding implementation matter and the next steps in this
research, along with a proposed timeline.

� Chapter V outlines the intended outcomes of this research effort.

An important design decision is whether the resulting development is intended to be
reasoned about or not. If reasoning is important, then a language that better supports it
is ideal. That is why we are using Agda –using a simpler language and maintaining data
invariants eventually becomes much harder [LM13].
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Let us conclude by attempting to justify the title of this thesis proposal.

Landin’s The Next 700 Programming Languages [Lan66] inspired a number of works,
including [BPT17; Pau93; FMP15; Lei07; FMW10] and more. The intended aim of the
thesis is a requirements driven approach to coherent modularisation constructs in DTLs. In
particular, we wish to extend Agda to be powerful enough to implement the module system
features, in the core language, that people actually want and currently mimic by-hand or using
third-party preprocessors. An eager fix would be to provide metaprogramming features, but
unless one is altering the syntax or producing efficient code, this is glorified pre-processing
—it is a means to fake missing abstraction features. Moreover, metaprogramming would be
a hammer too big for the nail we are interested in; so big that its introduction might ruin the
soundness of the DTLs —e.g., two terms may be ill-typed and ill-formed, such as x + and
5 = 3, but are meaningful when joined together, as in x + 5 = 3. Our aim is to provide
just the right level of abstraction so that, if anything, users can write a type of container or
method upon it then derive ‘700’ simple alternate views of the same container and method.

To be clear, consider a semi-ring —or any simple record of 17 different kinds of data. A
semi-ring consists of two monoids —each consisting of a total of 7 items of data and proof
matter— where one of them is commutative and there are two distributivity axioms. Hence,
a semi-ring consists of 17 items. If we wanted to expose, say, 3 such items —for example, the
shared carrier and the identities of each monoid— then there are a total of

(
17
3

)
= 680 ways,

and if we jump to 4 items we have
(
17
4

)
= 2380 possible forms. Of course these numbers

are only upper bounds when record fields depend on earlier items. In section 3, we provide
explicit examples of different structural presentations of packages.

Usually, library designers provide one or two views, along with conversion functions,
and commit to those; instead we want to liberate them to choose whatever presentation
is convenient for the tasks at hand and to work comfortably with the guarantee that all
the presentations are isomorphic. Humans should be left to tackle difficult and interesting
problems; machines should derive the tedious and uninteresting —even if it’s simple, it saves
time, is less error-prone, and clearly communicates the underlying principle.

If anything, our aim is practical —to save developers from ad hoc copy-paste preprocessing
hacks.
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Chapter 2

Current Approaches

Structuring mechanisms for proof assistants are seen as tools providing administrative sup-
port for large mechanisation developments [RS09a], with support for them usually being
conservative: Support for structuring-mechanisms elaborates, or rewrites, into the language
of the ambient system’s logic. Conservative extensions are reasonable to avoid bootstrapping
new foundations altogether but they come at the cost of limiting expressiveness to the exist-
ing foundations; thereby possibly producing awkward or unusual uses of linguistic phrases of
the ambient language.

We may use the term ‘module’ below due to its familiarity, however some of the issues
addressed also apply to other instances of grouping mechanisms —such as records, code
blocks, methods, files, families of files, and namespaces.

In section 2.1 we define modularisation; in section 2.2 we discuss how to simulate it, and in
section 2.3 we review what current systems can and cannot do; then in section 2.4 we provide
legitimate examples of the interdefinability of different grouping mechanisms within Agda.
We conclude in section 2.5 by taking a look at an implementation-agnostic representation of
grouping mechanisms that is sufficiently abstract to ignore any differences between a record
and an interface but is otherwise sufficiently useful to encapsulate what is expected of module
systems. Moreover, besides looking at the current solutions, we also briefly discuss their flaws.

2.1 Expectations of Module Systems

Packaging systems are not so esoteric that we need to dwell on their uses; yet we recall
primary use cases to set the stage for the rest of our discussions.

Namespacing Modules provide new unique local scopes for identifiers thereby permitting
de-coupling.
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The ability to have multiple files contribute to the same namespace is also desirable
for de-coupled developments. This necessitates an independence of module names from
the names of physical files —such de-conflation permits recursive modules.

Information Hiding Modules ought to provide the ability to enforce content not to be
accessible, or alterable, from outside of the module to enforce that users cannot depend
on implementation design decisions.

Citizenship Grouping mechanisms need not be treated any more special than record types.
As such, one ought to be able to operate on them and manipulate them like any first-
class citizen.

In particular, packages themselves have types which happen to be packages. This is the
case with universal algebra, and OCaml, where ‘structures’ are typed by ‘signatures’
—note that OCaml’s approach is within the same language, whereas, for example,
Haskell’s recent retrofitting [Kil+14], of its weak module system to allow such interfac-
ing, is not entirely in the core language since, for example, instantiating happens by
the package manager rather than by a core language declaration.

Polymorphism Grouping mechanisms should group all kinds of things without prejudice.

This includes ‘nested datatypes’: Local types introduced for implementation purposes,
where only certain functionality is exposed. E.g., in an Agda record declaration, it
may be nice to declare a local type where the record fields refer to it. This approach
naturally leads into hierarchical modules as well.

Interestingly, such nesting is expressible in Cayenne, a long-gone predecessor of Agda.
The language lived for about 7 years and it is unclear why it is no longer maintained.
Speculation would be that dependent types were poorly understood by the academics
let alone the coders —moreover, it had essentially one maintainer who has since moved
on to other projects.

With the metaprogramming inspired approach we are proposing, it is only reasonable
that, for example, one be able to mechanically transform a package with a local type
declaration into a package with the local declaration removed and a new component
added to abstract it. That is, a particular implementation is no longer static, but
dynamic.

It would not be unreasonable to consider adding to this enumeration:

Sharing The computation performed for a module parameter should be shared across its
constituents, rather than inefficiently being recomputed for each constituent —as is the
case in the current implementation of Agda.

It is however debatable whether the following is the ‘right’ way to incorporate object-
oriented notions of encapsulation.
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Generative modules A module, rather than being pure like a function, may have some
local state or initial setup that is unique to each ‘instantiation’ of the module —rather
than being purely applying a module to parameters.

SML supports such features. Whereas Haskell, for example, has its typeclass system
essentially behave like an implicitly type-indexed record for the ‘unnamed instance
record’ declarations; thereby rendering useless the interfaces supporting, say, only an
integer constant.

Subtyping This gives rise to ‘heterogeneous equality’ where altering type annotations can
suddenly make a well-typed expression ill-typed. E.g., any two record values are equal
at the subtype of the empty record, but may be unequal at any other type annotation.

Since a package could contain anything, such as notational declarations, it is unclear
how even homogeneous equality should be defined —assuming notations are not part
of a package’s type.

There are many other concerns regarding packages —such as deriving excerpts, decoration
with higher-order utilities, literate programming support, and matters of compilation along
altered constituents— but they serve to distract from our core discussions and are thus
omitted.

2.2 Ad hoc Grouping Mechanisms

Many popular coding languages do not provide top-level modularisation mechanisms, yet
users have found ways to emulate some or all of their requirements. We shall emphasise a
record-like embedding in this section, then illustrate it in Agda in the next section.

Namespacing: Ubiquitous languages, such as C, Shell, and JavaScript, that do not have
built-in support for namespaces mimic it by a consistent naming discipline as in
theModule_theComponent. This way, it is clear where theComponent comes from; namely,
the ‘module’ theModule which may have its interface expressed as a C header file or as a
JSON literal. This is a variation of Hungarian Notation [18c].

Incidentally, a Racket source file, module, and ‘language’ declaration are precisely the
same. Consequently, Racket modules, like OCaml’s, may contain top-level effectful expres-
sions. In a similar fashion, Python packages are directories containing an __init__.py file
which is used for the the same purpose as Scala’s package object’s —for package-wide
definitions.

Objects: An object can be simulated by having a record structure contain the proper-
ties of the class which are then instantiated by record instances. Public class methods are
then normal methods whose first argument is a reference to the structure that contains the
properties.
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Muliple Forms of the Template-Instantiation Duality

Template has a Instance
≈ class ≈ object
≈ type ≈ value
≈ theorem statement ≈ witnessing proof
≈ specification ≈ implementation
≈ interface ≈ implementation
≈ signature ≈ algebra
≈ logic ≈ theory

Modules: Languages that do not support a module may mimic it by placing “module
contents” within a record. Keeping all contents within one massive record also solves the
namespacing issue.

In JavaScript, for example, a module is a JSON literal —i.e., a comma separated list
of key-value pairs. Moreover, encapsulation is simulated by having the module be encoded
as a function that yields a record which acts as the public contents of the module, while
the non-returned matter is considered private. Due to JavaScript’s dynamic nature we can
easily adjoin functionality to such ‘modules’ at any later point; however, we cannot access
any private members of the module. This inflexibility of private data is a heavy burden in
an Object Oriented Paradigm.

Sub-Modules: If a module is encoded as a record, then a sub-module is a field in the
record which itself happens to be a module encoding.

Parameterised Modules: If a module can be considered as encoded as the returned
record from a function, then the arguments to such a function are the parameters to the
module.

Mixins: A mixin is the ability to extend a datatype X with functionality Y long after,
and far from, its definition. Mixins ‘mix in’ new functionality by permitting X obtains traits
Y —unlike inheritance which declares X is a Y. Examples of this include Scala’s traits, Java’s
inheritance, Haskell’s typeclasses, and C#’s extension methods.

Typescript [BAT14] occupies an interesting position with regards to mixins: It is one of
the few languages to provide union and intersection combinators for its interface grouping
mechanism, thereby most easily supporting the little theories [FGJ92] method and making
theories a true lattice. Interestingly intersection of interfaces results in a type that contains
the declarations of its arguments and if a field name has conflicting types then it is, recursively,
assigned the intersection of the distinct types —the base cases of this recursive definition are
primitive types, for which distinct types yield an empty intersection. In contrast, its union
types are disjoint sums.

In the dependently-typed setting, one also obtains so-called ‘canonical structures’ [Gon+13b],
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which not only generalise the previously mentioned mixins but also facilitate a flexible style
of logic programming by having user-defined algorithms executed during unification; thereby
permitting one to omit many details [MT13] and have them inferred. As mentioned earlier
regarding objects, we could simulate mixins by encoding a class as a record and a mixin as a
record-consuming method. Incidentally languages admitting mixins give rise to an alternate
method of module encoding: A ‘module of type M’ is encoded as an instantiation of the mixin
trait M.

These natural encodings only reinforce our idea that there is no real essential difference
between grouping mechanisms: Whether one uses a closure, record, or module is a matter of
preference the usage of which communicates particular intent.

2.3 Existing Systems

We want to implement solutions in a dependently typed language. Let us discuss which are
active and their capabilities.

Dependent-types provide an immense level of expressivity thereby allowing varying de-
grees of precision to be embedded, or omitted, from the type of a declaration. This over-
whelming degree of freedom comes at the cost of common albeit non-orthogonal styles of
coding and compilation, which remain as open problems that are only mitigated by awk-
ward workarounds such as Coq’s distinction of types and propositions for compilation effi-
ciency. The difficulties presented by DTLs are outweighed by the opportunities they provide
[AMM05] —of central importance is that they blur distinctions between usual programming
constructs, which is in alignment with our thesis.

To the best of our knowledge, as confirmed by Wikipedia in [18d; 18b], there are currently
less than 15 actively developed dependently-typed languages in-use that are also used as proof-
assistants —which are intersting to us since we aim to mechanise all of our results: Algorithms
as well as theorems.

Agda [BDN; Nor07]: One of the more popular proof assistants around; possibly due to
its syntactic inheritance from Haskell —as is the case with Idris. Its Unicode mixfix lexemes
permit somewhat faithful renditions of informal mathematics; e.g., calculational proofs can
be encoded to be read by those unfamiliar with the system. It also allows traditional func-
tional programming with the ability to ‘escape under the hood’ and write Haskell code. The
language has not been designed solely with theorem proving in mind, as is the case for Coq,
but rather has been designed with dependently-typed programming in mind [Jef13; WK18].

The current implementation of the Agda language has a notion of second-class modules
which may contain sub-modules along with declarations and definitions of first-class citizens.
The intimate relationship between records and modules is perhaps best exemplified here
since the current implementation provides a declaration to construe a record as if it were
a module. This change in perspective allows Agda records to act as Haskell typeclasses.
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However, the relationship with Haskell is only superficial: Agda’s current implementation
does not support sharing. In particular, a parameterised module is only syntactic sugar such
that each member of the module actually obtains a new functional parameter; as such, a
computationally expensive parameter provided to a module invocation may be intended to
be computed only once, but is actually computed at each call site.

Coq [Pau; GCS14]: Unquestionably one of, if not, the most popular proof assistant
around. It has been used to produce mechanised proofs of the infamous Four Colour The-
orem [Gon], the Feit-Thompson Theorem [Gon+13a], and an optimising compiler for the C
language: CompCert [Com18; KLW14].

Unlike Agda, Coq supports tactics [Asp+] -a brute force approach that renders (hundred-
fold) case analysis as child’s play: Just refine your tactics till all the subgoals are achieved.
Ultimately the cost of utilising tactics is that a tactical proof can only be understood with
the aid of the system, and may otherwise be un-insightful and so failing to meet most of the
purposes of proof [Far18] —which may well be a large barrier for mathematicians who value
insightful proofs.

The current implementation of Coq provides the base features expected of any module
system. A notable difference from Agda is that it allows “copy and paste” contents of modules
using the include keyword. Consequently it provides a number of module combinators, such
as <+ which is the infix form of module inclusion [Coq18a]. Since Coq module types are
essentially contexts, the module type X <+ Y <+ Z is really the catenation of contexts, where
later items may depend on former items. The Maude [Cla+07; DM07] framework contains a
similar yet more comprehensive algebra of modules and how they work with Maude theories.
An important aspect of the thesis work will be to actually investigate Maude further and
attempt to reproduce and generalise some of the use cases in ‘the Maude book’ [Cla+07]
using a core set of packaging primitives for DTLs —we will return to what such primitives
may be in a later section, on preliminary research. The Common Algebraic Specification
Language [Ast+02; BM04; Mos04] will also be investigated with the aim of extracting, and
generalising, useful module combinators and their properties.

Incidentally, Coq modules are essentially Agda records —which is unsurprising since our
thesis states packaging containers are all essentially the same. In more detail, both notions
coincide with that of a signature —a sequence of pairs of name-type declarations. Where Agda
users would speak of a record instance, Coq users would speak of a module implementation.
To make matters worse, Coq has a notion of records which are far weaker than Agda’s; e.g.,
by default all record field names are globally exposed and records are non-recursive.

Coq’s module system extends that of OCaml; a notable divergence is that Coq permits
parameterised module types —i.e., parameterised record types, in Agda parlance. Such
module types are also known as ‘functors’ by Coq and OCaml users; which are “generative”:
Invocations generate new datatypes. Perhaps an example will make this rather strange
concept more apparent.
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Example of Generative Functors

-- Coq -- Corresponding Agda

Module Type Unit. End Unit. -- record Unit : Set where
Module TT <: Unit. End TT. -- tt : Unit; tt = record {}

Module F (X : Unit). -- module F (X : Unit) where
End F. -- data t : Set where C : t

Module A := F TT. -- module A = F tt
Module B := F TT. -- module B = F tt

Fail Check eq_refl : A.t = B.t. -- 6= eq : A.t ≡ B.t ; eq = refl

As seen, in Coq the inductive types are different yet in Agda they are the same. This is
because Agda treats such parameterised records, or functors, as ‘applicative’: They can only
be applied, like functions.

For simplicity, we may think of generative functor applications F X as actually F X t
where t is an implicit tag such as textual position or clock time. From an object-oriented
programming perspective, F X for a generative functor F is like the new keyword in Java/C#:
A new instance is created which is distinct from all other instances even though the same
class is utilised. So much for the esotericity of generative functors.

Unlike Agda, which uses records to provide traditional record types, Haskell-like type-
classes, and even a module perspective of both, Coq utilises distinct mechanisms for type-
classes and canonical structures. In contrast, Agda allows named instances since all instances
are named and can be provided where an implicit failed to be found. Moreover, Coq’s ap-
proach demands greater familiarity with the unifer than Agda’s approach.

Idris [Bra11]: This is a general purpose, functional, programming language with de-
pendent types; alongside ATS, below, it is perhaps the only language in this list that can
truthfully boast to being general purpose and to have dependent types. It supports both
equational and tactic based proof styles, like Agda and Coq respectively; unlike these two
however, Idris erases unused proof-terms automatically rather than forcing the user to declare
this far in advance as is the case with Agda and Coq. The only (negligible) downside, for us,
is that the use of tactics creates a sort of distinction between the activities of proving and
programming, which is mostly fictitious.

Intended to be a more accessible and practical version of Agda, Idris implements the base
module system features and includes interesting new ones. Until recently, in Agda, one would
write module _ (x : N) where · · · to parameterise every declaration in the block “· · · ”
by the name x; whereas in Idris, one writes parameters (x : N) · · · to obtain the same
behaviour –which Agda has since improved upon it via ‘generalisation’: A declaration’s type
gets only the variables it actually uses, not every declared parameter.
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Other than such pleasantries, Idris does not add anything of note. However, it does
provide new constraints. As noted earlier, the current implementation of Idris attempts
to erase implicits aggressively therefore providing speedup over Agda. In particular, Idris
modules and records can be parameterised but not indexed —a limitation not in Agda.

Unlike Coq, Idris has been designed to “emphasise general purpose programming rather
than theorem proving” [Idr18; Bra16]. However, like Coq, Idris provides a Haskell-looking
typeclasses mechanism; but unlike Coq, it allows named instances. In contrast to Agda’s
record-instances, typeclasses result in backtracking to resolve operator overloading thereby
having a slower type checker.

Lean [Mou+15; Mou16]: This is both a theorem prover and programming language;
moreover it permits quotient types and so the usually-desired notion of extensional equality.
It is primarily tactics-based, also permitting a calc-ulational proof format not too dissimilar
with the standard equational proof format utilised in Agda.

Lean is based on a version of the Calculus of Inductive Constructions, like Coq. Lean is
heavily aimed at metaprogramming for formal verification, thereby bridging the gap between
interactive and automated theorem proving. Unfortunately, inspecting the language shows
that its rapid development is not backwards-compatible —Lean 2 standard libraries have
yet to be ported to Lean 3—, and unlike, for example, Coq and Isabelle which are backed
by other complete languages, Lean is backed by Lean, which is unfortunately too young to
program various tactics, for example.

ATS, Applied Type System: This language combines programming and proving, but
is aimed at unifying programming with formal specification. With the focus being more on
programming than on proving. [ATS18; CX05]

ATS is intended as an approach to practical programming with theorem proving. Its
module system is largely influenced by that of Modula-3, providing what would today be
considered the bare bones of a module system. Advocating a programmer-centric approach to
program verification that syntactically intertwines programming and theorem proving, ATS
is a more mature relative of Idris —whereas Idris is Haskell-based, ATS is OCaml-based.

F*: This language supports dependent types, refinement types, and a weakest precon-
dition calculus [F T18]. However it is primarily aimed at program verification rather than
general proof. Even though this language is roughly 8 years in the making, it is not mature
—one encounters great difficult in doing anything past the initial language tutorial.

F*’s module system is rather uninteresting, predominately acting as namespace manage-
ment. It has very little to offer in comparison to Agda; e.g., within the last two years, it
obtained a typeclass mechanism —regardless, typeclasses can be implemented as dependent
records.

Beluga: The distinctive feature and sole reason that we mention this language is its
direct support for first-class contexts [Pie10]. A term t(x) may have free variables and so
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whether it is well-formed or what its type could be depend on the types of its free variables,
necessitating one to either declare them before hand or to write, in Beluga,
[ x : T |- t(x) ] for example. As we have mentioned, and will reiterate a few times,
contexts are behaviourally indistinguishable from dependent sums.

A displeasure of Beluga is that, while embracing the Curry-Howard Correspondence, it
insists on two syntactic categories: Data and computation. This is similar to Coq’s distinction
of Prop and Type. Another issue is that to a large degree the terms one uses in their type
declarations are closed and so have an empty context therefore one sees expressions of the
form [ |- t ] since t is a closed term needing only the empty context. At a first glance, this
is only a minor aesthetic concern; yet after inspection of the language’s webpage, tutorials,
and publication matter, it is concerning that nearly all code makes use of empty contexts
—which are easily spotted visually. The tremendous amount of empty contexts suggests that
the language is not actually making substantial use of the concept, or it is yet unclear what
pragmatic utility is provided by contexts, and, in either way, they might as well be relegated
to a less intrusive notation. Finally, the language lacks any substantial standard libraries
thereby rendering it more as a proof of concept rather than a serious system for considerable
work.

Notable Mentions: The following are not actively being developed, as far we can tell
from their websites or source repositories, but are interesting or have made useful contri-
butions. In contrast to Beluga, Isabelle is a full-featured language and logical framework
that also provides support for named contexts in the form of ‘locales’ [Bal03; KWP99]; un-
fortunately it is not a dependently-typed language –though DTLs can be implemented in
it. Mizar, unlike the above, is based on (untyped) Tarski–Grothendieck set theory which in
some-sense has a hierarchy of sets. Like Coq, it has a large library of formalised mathemat-
ics [Miz18; NK09; Ban+18]. Developed in the early 1980s, Nuprl [PRL14] is constructive
with a refinement-style logic; besides being a mature language, it has been used to provide
proofs of problems related to Girard’s Paradox [Coq86]. PVS, Prototype Verification System
[Sha+01], differs from other DTLs in its support for subset types; however, the language
seems to be unmaintained as of 2014. Twelf [PT15] is a logic programming language imple-
menting Edinburgh’s Logical Framework [UCB08; Rab10; SD02] and has been used to prove
safety properties of ‘real languages’ such as SML. A notable practical module system [RS09b]
for Twelf has been implemented using signatures and signature morphisms. Matita [Asp+06;
Mat16] is a Coq-like system that is much lighter [Asp+09]; it is been used for the verification
of a complexity-preserving C compiler.

Dependent types are mostly visible within the functional community, however this is a
matter of taste and culture as they can also be found in imperative settings, [Nan+08], albeit
less prominently.
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2.4 Facets of Structuring Mechanisms: An Agda Rendi-
tion

In this section we provide a demonstration that with dependent-types we can show records,
direct dependent types, and contexts —which in Agda may be thought of as parameters to
a module— are interdefinable. Consequently, we observe that the structuring mechanisms
provided by the current implementation of Agda –and other DTLs– have no real differences
aside from those imposed by the language and how they are generally utilised. More impor-
tantly, this demonstration indicates our proposed direction of identifying notions of packages
is on the right track.

Our example will be implementing a monoidal interface in each format, then presenting
views between each format and that of the record format. Furthermore, we shall also
construe each as a typeclass, thereby demonstrating that typeclasses are, essentially, not only
a selected record but also a selected value of a dependent type —incidentally this follows from
the previous claim that records and direct dependent types are essentially the same.

Recall that the signature of a monoid consists of a type Carrier with a method _#_ that
composes values and an Id-entity value. With Agda’s lack of type-proof discrimination, i.e.,
its support for the Curry-Howard Correspondence, the “propositions as types” interpretation,
we can encode the signature as well as the axioms of monoids to yield their theory presentation
in the following two ways. Additionally, we have the derived result: Id-entity can be popped-
in and out as desired.

The following code blocks contain essentially the same content, but presented using dif-
ferent notions of packaging. Even though both use the record keyword, the latter is treated
as a typeclass since the carrier of the monoid is given ‘statically’ and instance search is used
to invoke such instances.
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Monoids as Agda Records

record Monoid-Record : Set1 where
infixl 5 _#_
field
-- Interface
Carrier : Set
Id : Carrier
_#_ : Carrier → Carrier → Carrier

-- Constraints
lid : ∀{x} → (Id # x) ≡ x
rid : ∀{x} → (x # Id) ≡ x
assoc : ∀ x y z → (x # y) # z ≡ x # (y # z)

-- derived result
pop-Idr : ∀ x y → x # Id # y ≡ x # y
pop-Idr x y = cong (_# y) rid

open Monoid-Record {{...}} using (pop-Idr)

Monoids as Typeclasses

record HasMonoid (Carrier : Set) : Set1 where
infixl 5 _#_
field
Id : Carrier
_#_ : Carrier → Carrier → Carrier
lid : ∀{x} → (Id # x) ≡ x
rid : ∀{x} → (x # Id) ≡ x
assoc : ∀ x y z → (x # y) # z ≡ x # (y # z)

pop-Id-tc : ∀ x y → x # Id # y ≡ x # y
pop-Id-tc x y = cong (_# y) rid

open HasMonoid {{...}} using (pop-Id-tc)

The double curly-braces {{...}} serve to indicate that the given argument is to be found
by instance resolution: The results for Monoid-Record and HasMonoid can be invoked without
having to mention a monoid on a particular carrier, provided there exists one unique record
value having it as carrier —otherwise one must use named instances [KS01]. Notice that
the carrier argument in the typeclasses approach, “structure on a carrier”, is an (undeclared)
implicit argument to the pop-Id-tc operation.

Alternatively, in a DTL we may encode the monoidal interface using dependent products
directly rather than use the syntactic sugar of records. The notation Σ x : A • B x denotes
the type of pairs (x , pf) where x : A and pf : B x —i.e., a record consisting of two fields.
It may be thought of as a constructive analogue to the classical set comprehension
{ x : A B x}.
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Monoids as Dependent Sums

-- Type alias
Monoid-Σ : Set1
Monoid-Σ = Σ Carrier : Set

• Σ Id : Carrier
• Σ _#_ : (Carrier → Carrier → Carrier)
• Σ lid : (∀{x} → Id # x ≡ x)
• Σ rid : (∀{x} → x # Id ≡ x)
• (∀ x y z → (x # y) # z ≡ x # (y # z))

pop-Id-Σ : ∀{{M : Monoid-Σ}}
(let Id = proj1 (proj2 M))
(let _#_ = proj1 (proj2 (proj2 M)))

→ ∀ (x y : proj1 M) → (x # Id) # y ≡ x # y
pop-Id-Σ {{M}} x y = cong (_# y) (rid {x})

where _#_ = proj1 (proj2 (proj2 M))
rid = proj1 (proj2 (proj2 (proj2 (proj2 M))))

Of the renditions thus far, the Σ rendering makes it clear that a monoid could have any
subpart as a record with the rest being dependent upon said record. For example, if we had
a semigroup type, we could have declared
Monoid-Σ = Σ S : Semigroup • Σ Id : Semigroup.Carrier S. There are a large num-
ber of such hyper-graphs, we have only presented a stratified view for brevity. In par-
ticular, Monoid-Σ is the extreme unbundled version, whereas Monoid-Record is the other
extreme, and there is a large spectrum in between –all of which are somehow isomorphic;
e.g., Monoid-Record ∼= Σ C : Set • HasMonoid C. Our envisioned system would be able
to derive any such view at will [Ast+02] and so programs may be written according to one
view, but easily repurposed for other view with little human intervention.

Instances and their use are as follows. One may realise that pop-0 proofs as a form of
polymorphism —we will return to package former polymorphism when discussing preliminary
research.

Instance Declarations
instance

N-record = record { Carrier = N ; Id = 0 ; _#_ = _+_
; lid = +-identity _ ; rid = +-identity _ ; assoc = +-assoc }

N-tc : HasMonoid N
N-tc = record { Id = 0; _#_ = _+_

; lid = +-identity _ ; rid = +-identity _ ; assoc = +-assoc }

N-Σ : Monoid-Σ
N-Σ = N , 0 , _+_ , +-identity _ , +-identity _ , +-assoc
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No Monoids Mentioned at Use Sites

N-pop-0r : ∀ (x y : N) → x + 0 + y ≡ x + y
N-pop-0r = pop-Idr

N-pop-0-tc : ∀ (x y : N) → x + 0 + y ≡ x + y
N-pop-0-tc = pop-Id-tc

N-pop-0t : ∀ (x y : N) → x + 0 + y ≡ x + y
N-pop-0t = pop-Id-Σ

Interestingly, notice that the grouping in N-Σ is just an unlabelled (dependent) product,
and so when it is used in pop-Id-Σ we project to the desired components. Whereas in the
Monoid-Record case we could have projected the carrier by Carrier M, now we would write
proj1 M.

Observe the lack of informational difference between the presentations, yet there is a
Utility Difference: Records give us the power to name our projections directly with possibly
meaningful names. Of course this could be achieved indirectly by declaring extra functions;
e.g.,

Agda

Carriert : Monoid-Σ → Set
Carriert = proj1

We will refrain from creating such boiler plate —that is, records allow us to omit such
mechanical boilerplate.

Finally, let us exhibit views between this form and the record form.

Agda

-- Following proves: Monoid-Record ∼= Σ Set HasMonoid.

to-record-from-usual-type : Monoid-Σ → Monoid-Record
to-record-from-usual-type (c , id , op , lid , rid , assoc)
= record { Carrier = c ; Id = id ; _#_ = op

; lid = lid ; rid = rid ; assoc = assoc
} -- Term construed by ‘Agsy’,
-- Agda’s mechanical proof search.

from-record-to-usual-type : Monoid-Record → Monoid-Σ
from-record-to-usual-type M =
let open Monoid-Record M
in Carrier , Id , _#_ , lid , rid , assoc

{- Essentially moved from record{· · · } to product listing -}

23



Furthermore, by definition chasing, refl-exivity, these operations are seen to be inverse
of each other. Hence we have two faithful non-lossy protocols for reshaping our grouped data.

In our final presentation, we construe the grouping of the monoidal interface as a sequence
of “variable : type” declarations —i.e., a ‘context’ or ‘telescope’. Since these are not top level
items by themselves, in Agda, we take a purely syntactic route by positioning them in a
module declaration as follows.

Agda

module Monoid-Telescope-User
(Carrier : Set) (Id : Carrier) (_#_ : Carrier → Carrier → Carrier)
(lid : ∀{x} → Id # x ≡ x) (rid : ∀{x} → x # Id ≡ x)
(assoc : ∀ x y z → (x # y) # z ≡ x # (y # z))
where

pop-Idm : ∀(x y : Carrier) → (x # Id) # y ≡ x # y
pop-Idm x y = cong (_# y) (rid {x})

Notice that this is nothing more than the named fields of Monoid-Record squished into
six lines. Additionally, if we insert a Σ before each name we essentially regain the Monoid-Σ
formulation. It seems contexts, at least superficially, are a nice middle ground between the
previous two formulations.

As promised earlier, we can regard the above telescope as a record:

Agda

record-from-telescope : Monoid-Record
record-from-telescope
= record { Carrier = Carrier ; Id = Id ; _#_ = _#_

; lid = lid ; rid = rid ; assoc = assoc }

The structuring mechanism module is not a first class citizen in Agda. As such, to obtain
the converse view, we work in a parameterised module.

Agda

module record-to-telescope (M : Monoid-Record) where

open Monoid-Record M
-- Treat record type as if it were a parameterised module type,
-- instantiated with M.

open Monoid-Telescope-User Carrier Id _#_ lid rid assoc

Notice that we just listed the components out —rather reminiscent of the formulation
Monoid-Σ. This observation only increases confidence in our thesis that there is no real
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distinctions of packaging mechanisms in DTLs.

Undeniably instantiating the telescope approach to monoids for the natural number is
nothing more than listing the required components.

Agda

open Monoid-Telescope-User N 0 _+_ (+-identity _) (+-identity _) +-assoc

C.f., the definition of N-Σ: This is nearly the same instantiation with the primary syn-
tactical difference being that this form had its arguments separated by spaces rather than
commas!

Agda

N-popm : ∀(x y : N) → x + 0 + y ≡ x + y
N-popm = pop-Idm

Notice how this presentation makes it explicitly clear why we cannot have multiple in-
stances: There would be name clashes. Even if the data we used had distinct names, the
derived result may utilise data having the same name thereby admitting name clashes else-
where. —This could be avoided in Agda by qualifying names and/or renaming.

It is interesting to note that this presentation is akin to that of class-es in C#/Java
languages: The interface is declared in one place, monolithic-ly, as well as all derived opera-
tions there; if we want additional operations, we create another module that takes that given
module as an argument in the same way we create a class that inherits from that given class.

Demonstrating the interdefinablity of different notions of packaging cements our thesis
that it is essentially utility that distinguishes packages more than anything else. In particular,
explicit distinctions have lead to a duplication of work where the same structure is formalised
using different notions of packaging. In chapter 3 we will show how to avoid duplication by
coding against a particular ‘package former’ rather than a particular variation thereof –this
is akin to a type former.

2.5 Theory Presentations: A Structuring Mechanism

What of the most closely related theoretical work?

Our envisioned effort would support a “write one, obtain many” approach to package
formation. We now turn to mentioning how package formers are currently treated formally
under the name of ‘theory presentations’. It is the aim of this section to attest that the
introduction’s story is not completely on shaky foundations, thereby asserting that the afore-
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mentioned goals of the introduction are not unachievable —and the problems that will be
posed in chapter 3 are not trivial.

As discussed, languages are usually designed with a bit more thought given to a first-
class citizen notion of grouping than is given to second-class notions of packaging up defined
content. Object-oriented languages, for example, comprise features of both views by treating
classes as external structuring mechanisms even though they are normal types of the type
system. This internalising of external grouping features has not received much attention
with the notable mentions being [MRK18; DP15]. It is unclear whether there is any real
distinction between these ‘internal, integrated’ and ‘external, stratified’ forms of grouping,
besides intended use. The two approaches have different advantages. Both approaches permit
separation of concerns: The external point of view provides a high-level structuring of a
development, the internal point of view provides essentially another type which can be the
subject of the language’s operations —e.g., quantification or tactics— thereby being more
amicable to computing transformations. Essentially it comes down to whether we want a
‘module parameter’ or a ‘record field’ —why not write it the way you like and get the other
form for free.

Since external grouping mechanisms tend to allow for intra-language features —e.g., im-
ports, definitions, notation, extra-logical declarations such as pragmas— their systematic
internalisation necessitates expressive record types. As such, a labelled product type or
context —being a list of name-type declarations with optional definitions— is a sufficiently
generic rendition of what it means to group matter together.

Below is a grammar, from [MRK18], for a simple yet powerful module system based
on theory (presentations) and theory morphisms –which are merely named contexts and
named substitutions between contexts, respectively. Both may be formed modularly by
using includes to copy over declarations of previously named objects. Unlike theories which
may include arbitrary declarations, theory morphisms (V : P → Q) := δ are well-defined if
for every P-declaration x : T, δ contains a declaration x = t where t may refer to all names
declared in Q. Observe that a context is, up to syntactical differences, essentially JavaScript
object notation literal. Consequently, the notion of a mixin as described for JSON literals is
here rendered as a theory morphism.
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Syntax for Dependently Typed λ-calculus with Theories

-- Contexts
Γ ::= · -- empty context

| x : τ [:= τ’], Γ -- context with declaration, optional definition
| includes X, Γ -- theory inclusion

-- Terms
τ ::= x | τ1 τ2 | λ x : τ’ • τ -- variables, application, lambdas

| Π x : τ’ • τ -- dependent product
| [Γ] | 〈Γ〉 | τ.x -- record “[type]” and “〈element〉” formers, projections
| Mod X -- contravariant “theory to record” internalisation

-- Theory, external grouping, level
θ ::= . -- empty theory

| X := Γ, θ -- a theory can contain named contexts
| (X : (X1 → X2)) := Γ -- a theory can be a first-class theory morphism

-- Proviso: In record formers, Γ must be flat; i.e., does not contain includes.

-- Example theory hierarchy of signatures, abbrevating “(Π x : A • B) = (A → B)”.
, MagmaSig := Carrier : Set, _#_ : Carrier → Carrier → Carrier, .
, MonSig := includes MagmaSig, Id : Carrier, .
, .

This concept of packaging indeed captures much of what’s expected of grouping mecha-
nisms; e.g.,

� Grouping mechanism should group all kinds of things and indeed there is no constraint
on what a theory presentation may contain.

� Namespacing: Every module context can be construed as a record whose contents can
then be accessed by record field projection.
Theories as Types [MRK18] presents the first formal approach that systematically in-
ternalises theories into record types. Their central idea is to introduce a new operator
Mod –read “models of”— that turns a theory T into a type ModT which behaves like a
record type.

� Operations on grouping mechanisms [CO12].

As mentioned earlier, a theory morphism, also known as a ‘view’, is a map between
contexts that implements the interface of the source using utilities of the target; whence
results about specific structures can be constructed by transport along views [FGJ92]: A
view V : P → Q gives rise to a term homomorphism from P-terms to Q-terms that is type-
preserving in that whenever θ, P ` t : T then θ, Q ` t : T. Thus, views preserve
judgements and, via the propositions-as-types representations, also preserve truth.

For example, a view Φ = (U, β) : S → T is essentially a predicate U , of the target theory,
denoting a universe of discourse along with an arity-preserving mapping β of S-symbols, or
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declarations, to T -expressions. It is lifted to terms as follows — notice translated variable-
binders are relativised to the new domain.

Φ Extended to Terms

Φ(x) = x Provided x is an S-variable symbol
Φ (f(t1, . . . , tn)) = β(f) (Φ t1, . . . ,Φ tn) Provided f is a n-ary S-function symbol

Φ (Qx • P ) = (Qx U x • Φ(P )) Provided Q is a variable-binder ∀,∃, λ

The Standard Interpretation Theorem [Far93] provides sufficient conditions for a transla-
tion to be an ‘interpretation’ which transports results between formalisations. It states: A
translation is an interpretation provided S-axioms P are lifted to theorems Φ(P ), the uni-
verse of discourse is non-empty (∃x • U x), and the interpretation of the universe contains
the interpretations of the symbols; i.e., for each S-symbol f of arity n,
Φ(∀x1, . . . , xn • ∃y • f x1 . . . x n = y).

By virtue of being a validity preserving homomorphism, a standard interpretation syntac-
tically and semantically embeds its source theory in its target theory. The most important
consequence of interpretability is the Standard Relative Satisfiability [Far93] which says that a
theory which is interpretable in a satisfiable theory is itself satisfiable; in programming terms
this amount to: If X is an implementation of ‘interface’ T and S is interpretable in T then
X can be transformed into an implementation of S. Interestingly such ‘subtyping’ can be
derived in a mechanical fashion, but it can leave the subtype relation to be cyclic. However,
it is unclear under which conditions translations automatically give rise to interpretations:
Can the issue be relegated to syntactic manipulation only?

Theory interpretation has been studied for first-order predicate logic then extended to
higher-order logic [Far93]. The advent of dependent-types, in particular the blurring of
operations and formulae [18a], means that propositions of a language can be encoded into
it as other sorts, dependent on existing sorts, thereby questioning what it means to have a
validity-preserving morphism when the axioms can be encoded as operations? As far as we
can tell, it seems very little work regarding theory interpretations has been conducted in
dependently-typed settings [PS90; BL16; FM93; Lip92].
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Chapter 3

Solution Requirements

From the outset we have proposed a particular approach to resolving the needless duplication
present in current module systems that are utilised in non-dependently-typed languages. Up
to this point, we have only discussed how our approach could mitigate certain troubles; such
as a difference of perspectives of modules, or of equivalent operations acting on different
perspectives of modules. We now turn to discussing, in the following subsections, what it is
that is missing from existing module systems, what one actually wants to do with modules,
and conclude with a checklist of features that our proposed system should meet in order to
be considered usable and adequate as a thesis-level effort.

3.1 Missing Features

Certain mechanically-derivable concepts, such as different perspectives, are needlessly dele-
gated to the user by pedestrian packaging systems. Besides being tedious and error-prone, the
inexpressibility of derivates obscures the corresponding general principles underlying them,
thus foregoing any machine assistance in ensuring any correctness or safety-ness guarantees.
The desire to pursue a more economical yet powerful packaging system follows from our re-
search team’s expedited efforts that could have been mechanised . We will only mention two
such use cases.

Expressivity:

A common pattern that can be seen, for example, in the Agda standard library, is of a
predicate ensuring desirable properties OF its inputs, then of a record containing the inputs
as fields along with a proof of said predicate. More concretely, suppose we have a binary
predicate named IsSemi and the record is named Semi; the predicate form allows us to
quantify over inputs as in ∀ x y → IsSemi x y → · · · , in contrast the latter approach is
intrinsic in nature: ∀ (s : Semi) → · · · —contrast this with a mathematician naturally
declaring “let s be a semigroup”, whereas almost never do mathematicians say “let x be a set
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and y be an operation on it that together constitute a semigroup”.

At a first glance, it does not seem too troublesome to produce the record presentation
from the predicate presentation: Simply repeat all the inputs under a record declaration along
with a proof obligation. However, the word ‘repeat’ already suggests a problem, and ‘all’
suggests another one. What if one desires to utilise the record associated to the predicate by
only packaging certain inputs but not others? This is akin to the problem of constructors in
object-oriented languages: In Java, for example, one uses overloading to provide a number of
user-written constructors for only a few resonable input invocations to construct an object;
in contrast, Common Lisp permits optional named arguments, and so in one fell swoop, with
one user-written, constructor, provides all possible combinations of constructor invocations
—we are aiming at this level of power and flexibility.

Lest it’s unclear, let’s elaborate slightly on the idea. A semigroup is an algebraic structure
that models (untyped) compositionality: It consists of a collection of objects of interests called
the Carrier set, and an operation _#_ to compose existing items to produce new items, and
the operation is associative. Below is a spectrum of ways to bundle up such a structure
–starting from being completely bundled up all the way to being completely exposed.

A value of “Semigroup0” is an arbitrary semigroup.

-- One extreme: Completely bundled up
record Semigroup0 : Set1 where
field
Carrier : Set
_#_ : Carrier → Carrier → Carrier
assoc : ∀ x y z → (x # y) # z ≡ x # (y # z)

A value of “Semigroup1 C” is a semigroup “structure on” type “C.”

-- ‘Typeclass’ on a given Carrier
-- Alternatively: Carrier is known as runtime.
record Semigroup1 (Carrier : Set): Set1 where
field
_#_ : Carrier → Carrier → Carrier
assoc : ∀ x y z → (x # y) # z ≡ x # (y # z)

A value of “Semigroup2 C op” is a “proof” that ‘C’ with ‘op’ forms a semigroup.

-- Two items known at run time --c.f., “IsSemi” above.
record Semigroup2
(Carrier : Set)
(_#_ : Carrier → Carrier → Carrier) : Set where
field
assoc : ∀ x y z → (x # y) # z ≡ x # (y # z)
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The other extreme: Completely unbundled.

-- A value of “Semigroup3 C op pf” is trivially the empty record, if any,
-- provided ‘pf’ is a proof that ‘C’ forms a semigroup with ‘op’.
-- This type is usualy written “Σ C : Set • Σ _#_ : C → C → C • Σ assoc : · · · ”.
record Semigroup3
(Carrier : Set)
(_#_ : Carrier → Carrier → Carrier)
(assoc : ∀ x y z → (x # y) # z ≡ x # (y # z)) : Set where
-- no fields

Depending on the user’s needs, it may be useful to have one form or another. Unfortu-
nately they are enslaved to the choices of the library designer, or if they deviate then they
must produce tedious conversion methods and use them to pad all the library methods for
the structures. Even worse, such back and forth conversions will not only be representation
shuffling but also wasteful of resources.

For example, every bijective function f : A→ B furnishes its target B with a semigroup
structure provided its source A has the structure to begin with. Since the statement mentions
the carriers of semigroups, it is only natural to formulate it an prove it using presentation
Semigroup1.

Elementary Properties of Functions

Surjection : ∀{A B : Set} → (A → B) → Set
Surjection {A} {B} f = ∀ (b : B) → Σ a : A • b ≡ f a
-- (Σ a : A • P a) ≈ { (a, proof) a ∈ A ∧ pf is a proof of P(a) }

Injection : ∀{A B : Set} → (A → B) → Set
Injection {A} {B} f = ∀ {x y} → f x ≡ f y → x ≡ y
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An Involved Proof That We Would Like to Reuse

translate1 : ∀{A B} → (f : A → B) → Surjection f → Injection f
→ Semigroup1 A → Semigroup1 B

translate1 f surj inj AS =
let
open Semigroup1 AS

-- x #’ y is obtained by applying f to the #-composition of the pre-images of x and y.
infix 5 _#’_
_#’_ = λ x y → let a0 = proj1 (surj x); a1 = proj1 (surj y) in f (a0 # a1)

-- f distributes over # turning it into #’.
factor : ∀ {a a’} → f a #’ f a’ ≡ f (a # a’)
factor {a} {a’} =

let a , m = surj (f a)
a’ , w = surj (f a’)

in
begin
f a #’ f a’

≡〈 refl 〉
f (a # a’)

≡〈 cong f (cong2 _#_ (inj (sym m)) (inj (sym w))) 〉
f (a # a’)

distribute : ∀ {a a’} → f (a # a’) ≡ f a #’ f a’
distribute {a} {a’} = sym (factor {a} {a’})

in -- Bundle up #’ along with a proof of associtivity
record { _#_ = _#’_; assoc = λ x y z →
let

-- Obtain f-pre-images
a0 , x≈fa0 = surj x
a1 , y≈fa1 = surj y
a2 , z≈fa2 = surj z

in
{- Tersely, we rewrite along the pre-images,

factor f, perform the associativity of #,
then distribute f and rewrite along the pre-images.

-}
begin
(x #’ y) #’ z

≡〈 cong2 _#’_ (cong2 _#’_ x≈fa0 y≈fa1) z≈fa2 〉
(f a0 #’ f a1) #’ f a2

≡〈 cong (_#’ f a2) factor 〉
f (a0 # a1) #’ f a2

≡〈 factor 〉
f ((a0 # a1) # a2)

≡〈 cong f (assoc _ _ _) 〉
f (a0 # (a1 # a2))

≡〈 distribute 〉
f a0 #’ f (a1 # a2)

≡〈 cong (f a0 #’_) distribute 〉
f a0 #’ (f a1 #’ f a2)

≡〈 sym (cong2 _#’_ x≈fa0 (cong2 _#’_ y≈fa1 z≈fa2)) 〉
x #’ (y #’ z)

}
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translate1 is a lengthy proof, we could repeat it, or invoke it. Since duplication with
alteration is error-prone and non-generic, we shall aim for the latter.

Conversions are a Nuisance

translate0 : ∀{B : Set} (AS : Semigroup0) (f : Semigroup0.Carrier AS → B)
→ Surjection f → Injection f
→ Semigroup0

translate0 {B} AS f surj inj = record { Carrier = B ; _#_ = _#_ ; assoc = assoc }
where

-- Repackage ‘AS’ from a ‘Semigroup0’ to a ‘Semigroup1’
-- only to immediatley unpack it, so that its contents
-- are available to be repacked above as a ‘Semigroup0’.

pack : Semigroup1 (Semigroup0.Carrier AS)
pack = let open Semigroup0 AS

in record {_#_ = _#_; assoc = assoc }

open Semigroup1 (translate1 f surj inj pack)

Observe that translate0 repackages AS via pack, then passes that as an argument to
translate1, which in turn unpacks it to form a new Semigroup0, which is then unpacked in
the last line above. Regardless of any possible wasteful amount of packing and unpacking of
records –which may be mitigated via inlining– the way translate0 is written is far from ideal;
whereas translate1 is the appropriate level of abstraction to pose the problem. Instead, it
would be ideal to write the method at a sufficient level of generality such that translate0
and translate1 are, say, polymorphic instances thereof. This is what we shall propose in a
later section.

Excerption:

In order to produce reusable components, theories —i.e., packages— are formed from
existing theories by adding only one new concept at a time. Such an approach reduces the
possibility of missing a useful structure in the hierarchy, as well as provides tremendous
generality —operations can be rendered using the minimal interface required rather than one
that is overly expressive. This is a common scheme when formalising mathematics [SW11;
GCS14].

Unfortunately, a common scenario is when one wants to instantiate such a deeply nested
theory. More concretely, suppose we have the following fine-grained hierarchy.
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If we have the ingredients for a monoid in hand, we are unfortunately first required to
produce a left or right unital semigroup, which requires us to produce a pointed semigroup
first, and this regress continues to the base theory, Type. Building on semigroups, monoids
are a ubiquitous model of compositionality, and so this scenario happens rather often, in one
guise or another. The amount of syntactic noise required to produce a simple instantiation is
unreasonable: One should not be forced to work through the hierarchy if it provides no im-
mediate benefit. It is to be noted that this issue does not generally apply to implementations
of object-oriented class supporting multiple interfaces.

Even worse, pragmatically speaking, to access a field deep down in a nested structure
results in overtly lengthy and verbose names. Indeed, in the above example, the monoid
operation lives at the bottom-most level, we would need to access all the intermediary levels
to simply refer to it. Such verbose invocations would immediately give way to helper functions
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to refer to fields lower in the hierarchy; yet another opportunity for boilerplate to leak in.

It is interesting to note that diamond hierarchies cannot be trivially eliminated when
providing fine-grained hierarchies. As such, we make no rash decisions regarding limiting
them —and completely forgoe the unreasonable possibility of forbidding them.

A more common example from programming is that of providing monad instances in
Haskell. Most often users want to avoid tedious case analysis or prefer a sequential-style
approach to producing programs, so they want to furnish a type constructor with a monad
instance in order to utilise Haskell’s do-notation. Unfortunately, this requires an applicative
instances, which in turn requires a functor instance. However, providing the return-and-bind
interface for monads allows us to obtain functor and applicative instances. Consequently,
many users simply provide local names for the return-and-bind interface then use that to
provide the default implementations for the other interfaces. In this scenario, the standard
approach is side-stepped by manually carrying out a mechanical and tedious set of steps that
not only wastes time but obscures the generic process and could be error-prone.

Instead, it would be desirable to ‘flatten’ the hierarchy into a single package, consisting of
the fields throughout the hierarchy, possibly with default implementations, yet still be able
to view the resulting package at base levels in the hierarchy. Another benefit of this approach
is that it allows users to utilise the package without consideration of how the hierarchy was
formed, thereby providing library designers with the freedom to alter it in the future.

These features are considered ‘missing’ since they are reasonably achievable in a dependently-
typed system —e.g., the different forms of dependently-typed bundling suggest a form of
polymorphism. Their absence may be due to logistic reasons, such as no effort expedited in
their direction, or due to issues surrounding the logical frameworks of the systems. Which is
to blame is an investigation matter left to the thesis research.

3.2 Desirable Features

Our preliminary research, and personal use with dependently-typed systems, has yielded
three strongly desirable features of a module system for DTLs.

Uniformity:

A type alias and a value alias are merely aliases at the end of the day, so unlike Haskell,
for example, which distinguishes the two, Agda, for example, does not. More generally, type
families, simple types, type constructors, dependent types, etc, collapse into a single category:
Dependent types.

In particular, recall the canonical definition of ‘term’:
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Grammar for Terms
term ::= x -- variable

| f(term_0, ..., term_N) -- function application

In pedestrian languages, one distinguishes between value terms and type terms, whence
the t_i are constrained to be homogeneously all values or all types. In contrast, a dependently-
typed languages makes no such limitation, thereby allowing the t_i to be heterogeneous.
For example, in a simple type system, Maybe (A × List B) is a term where all variables,
t0, t1 = A,B, are of the same kind —types. This is not so with the term
Maybe (A × Vec B n) —A and B are types while n is a number. Our aim is not to educate
the reader on the power and utility of dependent types; we invite the reader to consult any
of the existing material [AMM05; BDN].

In the same vein, the varying notions of packaging are treated differently even though
they are isomorphic in certain scenarios or interdefinable in others. As such, it would be
useful to reduce the syntactic distinction between them.

Genericity:

Type polymorphism permits us to produce functions written once with type variables
and have them applied to radically different types. Likewise, it would be desirable to write
once a generic function on a kind of package and have it operate on the many variations of
packaging.

An example of this idea is presented at the end of this section, as part of preliminary
research. In particular, we demonstrate a novel form of generic programming, package poly-
morphism: A method is written against a generic notion of container and is then applied to
derived notions —such as the Semigroupi forms from the previous section.

Extensiblity:

Systems tend to come with a pre-defined set of operations for built-in constructs; the
user is left to utilise third-party pre-processing tools, for example, to provide extra-linguistic
support for common repetitive scenarios they encounter.

More concretely, a large number of proofs can be discharged by merely pattern matching
on variables —this works since the case analysis reduces the proof goal into a trivial reflex-
itivity obligation, for example. The number of cases can quickly grow thereby taking up
space, which is unfortunate since the proof has very little to offer besides verifying the claim.
In such cases, a pre-process, perhaps an “editor tactic”, could be utilised to produce the proof
in an auxiliary file, and reference it in the current file.

Perhaps more common is the renaming of package contents, by hand. For example,
when a notion of preorder is defined with relation named _≤_, one may rename it and all
references to it by, say, _v_. Again, a pre-processor or editor-tactic could be utilised, but
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many simply perform the re-write by hand —which is tedious, error prone, and obscures the
generic rewriting method.

It would be desirable to allow packages to be treated as first-class concepts that could
be acted upon, in order to avoid third-party tools that obscure generic operations and leave
them out of reach for the powerful typechecker of a dependently typed system.

These features are desirable for working with modules, yet raise a number of immediate
concerns. For example, uniformity may lead to ambiguous parsing, genericity may lead to
inefficient execution, and extensibility borders on meta-programming thereby leaving the
realm of types altogether. Possible limitations on these features may result in the thesis
efforts to implement them in a dependently-typed system, such as Agda.

3.3 One-Item Checklist for a Candidate Solution

An adequate module system for dependently-typed languages should make use of dependent-
types as much as possible. As such, there is essentially one and only one primary goal for
a module system to be considered reasonable for dependently-typed languages: Needless
distinctions should be eliminated as much as possible.

The “write once, instantiate many” attitude is well-promoted in functional communities
predominately for functions, but we will take this approach to modules as well, beyond
the features of, e.g., *ML functors. With one package declaration, one should be able to
mechanically derive data, record, typeclass, product, sum formulations, among many oth-
ers. All operations on the generic package then should also apply to the particular package
instantiations.

This one goal for a reasonable solution has a number of important and difficult subgoals.
The resulting system should be well-defined with a coherent semantic underpinning—possibly
being a conservative extension—; it should support the elementary uses of pedestrian module
systems; the algorithms utilised need to be proven correct with a mechanical proof assistant,
considerations for efficiency cannot be dismissed if the system is to be usable; the interface for
modules should be as minimal as possible, and, finally, a large number of existing use-cases
must be rendered tersely using the resulting system without jeopardising runtime performance
in order to demonstrate its success.

During the research stage of the thesis, some of the sub-goals may be altered radically,
dismissed altogether, or new ones brought forth due to implementation considerations. How-
ever, the one main goal will remain unchanged as it is how we have chosen to measure the
minimal adequacy for a module system for rich settings that include dependent-types.
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3.4 Preliminary Research

The homogeneous treatment of structuring mechanisms is herein presented using a prototype
developed using the user-friendly Emacs application framework by means of textual expan-
sion, the details of which are largely uninteresting —suffice it to say, the code is tremendously
terse. In this section we demonstrates that packaging concepts differ only in their use, leading
to a uniform syntax of which first-class records are an instance and so the resulting system is
homoiconic in nature. We introduce fictitious syntax, mostly in red, with its intended Agda
elaboration in blue —the users write the red and expect it to behave like the blue; no “code
generation” transpires.

The reader is advised to remember that the value of a prototype is in the guidance it
provides, not the implementation itself nor any of its design decisions —such as using strings
in meta-programming scenarios. In other words, for the reader, portions of this section may
serve as an exercise in foresight and patience. ( A brief demonstration of the prototype may
be viewed at https://www.youtube.com/watch?v=NYOOF9xKBz8 .)

The initiated reader will quickly notice that our package formers are just theory pre-
sentations —a list of name-type pairs. The chosen phrasing is due to the target audience,
DTL programmers. We are not committed to the name, but unlike the overloaded ‘module’,
‘package former’ is a good new name without too many meanings. We have not provided
full semantics for package formers, but we have provided concrete well-defined elaborations
to communicate the intent: A package former is akin to a type former, it is ‘incomplete’ and
does not define a concrete package until a certain tag is provided. It is part of the thesis
effort to investigate which features of our proposed package formers break, or become limited,
when considered with other language constructs.

The uniformity in syntax reduces the variety of sub-languages in a dependently-typed
language by eliminating needless distinctions for notions of containers. The first subsection
below addresses syntactic similarity, whereas the second tackles computing similarity, and
we conclude with a brief discussion on foundational concerns.

3.4.1 First Observation: Syntactic Similarity for Containers

Since the prototypical notion of packaging is that of records, which are value terms, all,
necessarily succeeding, notions of packaging ought to be treated uniformly as value types.
Consequently, variations on packaging should only be signalled by necessary keywords, and
otherwise should be syntactically indistinguishable. That is to say, a ‘variation’ is a tag
identifying what particular form of module is desired, such as datatype for an algebraic data
type with the declared fields as constructors, or as record to yield a record structure with
constituents being the declared fields.

For example, just as List is a type-former, we may declare a ‘package former’:
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Our first package former

PackageFormer TermP (v : Variation) : Set where
Var : Int → TermP v
Add : TermP v → TermP v → TermP v

Note that a package former is just a sequence of names with types and, as will be demon-
strated later, optional default types. It requires a particular “interpretation” —possibly
user-defined—, to produce some notion of package. This is signalled by the Variation type,
which for brevity contains data, record, typeclass, and a few more that we will meet
below.

For example, the data variation of packaging gives us a free data type.

Free data type: Terms are integer variables and addition of terms

TermData = TermP data
{-
∼= data TermData : Set where

Var : Int → TermData
Add : TermData → TermData → TermData

-}

In the comment above, we indicate how our fictitious syntax is intended to be elabo-
rated into current Agda syntax. Besides syntax, induction principles are also derived: Our
envisioned system would be able to derive simple, tedious, uninteresting concepts; leaving
difficult, interesting, ones for humans to solve. For this type, below is the dependently typed
eliminator, which in a DTL, corresponds to an induction principle.

Free data types also come with an induction principle

{-
term-data-elim : ∀ {} {R : TermData → Set }

→ (base : (n : Int) → R (Var n))
→ (ind : ∀ {s t} → R s → R t → R (Add s t))
→ (t : TermData) → R t

term-data-elim base ind (Var n) = base n
term-data-elim base ind (Add s t) = ind rs rt

where rs = term-data-elim base ind s
rt = term-data-elim base ind t

-}

The type of the package former, for now, could simply be Set —c.f., the commented-
out elaboration which declares TermData : Set. However, if we permit a sufficiently small
subtyping system, we may find it desirable to have the type of a package former be itself a
package former! Moreover, if package former t has type package former t’, then the user
should be able to use t at the levels t : s without too much overhead, where s is any subtype
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of t with Set being a minimal such subtype. These thoughts are hurried and it is the purpose
of the thesis to investigate what is the appropriate route.

It is often the case that one begins working with a record of useful semantic data, but
then, say, for proof automation, may want to use the associated datatype for syntax. The
latter should be mechanically derivable, and this is what we aim provide with our package
formers. We will not delve into the relationship between free data types and how, for exam-
ple, their associated catamorphism is necessarily also an interpreter —in the programming
languages sense. The reader is invited to consult a reference [Shu16].

We shall not discuss polymorphism along variations, the v components above, as it is
orthogonal to our immediate goals. For example, TermP could have a field typed
TermP (f v) → TermP (g v) → TermP v, where f and g are operations on variations.
Nonetheless, this is a feature that one should be aware of.

The remaining items instantiate package formers for the usual common uses. Including
notions of records in item 1; an algorithmic sketch underlying the examples of item 1 is
presented in item2; union types and external, second-class, modules in item 3; package former
polymorphism in item 4; operating on package formers and inheritance in items 5 and 6; then
discuss how package formers handle the diamond problem in item 7. Finally, we close in item
8 by discussing a problem not generally found in pedestrian languages and how it is solved
using package formers.

1. The Generality of Package Formers —Products

To demonstrate the generality of the notion of package formers we shall demonstrate
how other common forms could be ‘derived’ from the single declaration above. It is to
be noted that for such a small example, such derived code may be taken for granted,
however for much larger theories —for example, a “field” comes with more than 20
fields— the ability to derive different perspectives in a consistent fashion is indispens-
able; especially when the package is refactored. More realistically, a symmetric rig
groupoid uses about 212 coherence laws [rig_computation], for which case-splitting,
to perform proofs, yields over 200 goals thereby making metaprogramming a tempting
approach.

Records
-- An instance of TermRecord should have a carrier type
-- containing the integers, ‘Var’, and supports some binary operation, ‘Add’.
TermRecord = TermP record
{-
∼= record TermRecord : Set where

field
Carrier : Set
Var : Int → Carrier
Add : Carrier → Carrier → Carrier

-}
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In the previous and following invocations, the name Carrier is a system internal, for
now, and can easily be renamed —as will be demonstrated later on. For now, we
adhere to a single-sorted stance: Unless indicated otherwise, a Carrier will always be
included. An example of a two-sorted algebraic structure, graphs, is demonstrated at
the end of this subsection.

Built-in names, such as Carrier, are generally not ideal. For example, a machine may
provide the names FourLeggedFeline and CommutativeIdempotentMonoid where a
human may prefer Cat and JoinSemilattice instead. As such, the resulting system,
would accept ‘renaming’ functions to generate names. For now, we mostly limit such
an approach for brevity.

Haskell-style typeclasses —or Scala-like traits

TermOn = TermP typeclass
{-
∼= record TermOn (Carrier : Set) : Set where

field
Var : Int → Carrier
Add : Carrier → Carrier → Carrier

-}

A pair of functions on a declared carrier type

TermFunctionsOn = TermP tuples
{-
TermFunctionsOn : Set → Set
TermFunctionsOn C = (Int → C) × (C → C → C)
-}

Or the carrier is existential
TermFunctions = TermP Σ
-- ∼= TermFunctions = Σ C : Set • Σ Var : Int → C • (C → C → C)

Let’s show a more intricate yet desirable use.

The interface of non-empty lists

PointedSemigroup = TermP record hiding (Var) renaming (Add to _#_)
field
Id : Carrier
#-assoc : ∀ x y z → x # (y # z) ≡ (x # y) # z

{-
∼= record PointedSemigroup : Set1 where

field
Carrier : Set
_#_ : Carrier → Carrier → Carrier
Id : Carrier
#-assoc : ∀ x y z → x # (y # z) ≡ (x # y) # z

-}
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2. Algorithmically Obtaining Elaborated Types We have discussed how the generic pack-
age formers elaborate —each blue comment indicates a standalone isomorphic Agda
rendition—, as such it should be unsurprising that the constituents of a package former
are dependently typed functions consuming each concrete variation in its traditional
fashion. Let’s clarify this idea further.

Our example package former

PackageFormer TermP (v : Variation) : Set where
Var : Int → TermP v
Add : TermP v → TermP v → TermP v

The ‘type’ of the first item, for example, is as follows —where TermP v is rewritten
using the above introduced names for the sake of clarity.

The types of a constituents of a package former

Var : (v : Variation) → Set

{- Datatype constructor -}
Var datatype = Int → TermData
{- Dependent projection -}
Var record = (τ : TermRecord) → Int → TermRecord.Carrier τ
Var Σ = (τ : TermFunctions) → Int → proj1 τ
{- Parameter of a constraint -}
Var typeclass = ∀{C} {{_ : TermOn C}} → Int → C
Var tuples = ∀{C} → TermFunctionsOn C → Int → C
· · ·

An initial glance suggests that this is all ad-hoc; let us demonstrate that this is not the
case. Suppose there were a method T to obtain the user-provided types of constituents;
e.g., the given Var : Int → TermP v is indistinguishable from
Var : T “Var” (TermP v).

Obtaining User-Provided Types —Under the hood

Constituent = String -- Draft idea, not ideal.

-- “A 〈n〉→ B ≈ A → · · · → A → B” with n-many A’s.
_〈_〉→_ : Set → N → Set → Set
A 〈 zero 〉→ B = B
A 〈 succ n 〉→ B = A → (A 〈 n 〉→ B)

-- Constituents of package formers give rise to “Set 〈n〉→ Set” functions.
T : {P : PackageFormer} → Constituent P → Set 〈 arity P 〉→ Set
T “Var” X = Int → X
T “Add” X = X → X → X

It is now trivial to reify the above prescription for Var in a uniformly fashion —namely,
Var = tp “Var”.

42



Providing User-Facing Types —Under the hood

tp : Constituent → Variation → Set
tp c v@datatype = T c (TermP v)
tp c v@record = (τ : TermP v) → T c ((TermP v).Carrier τ)
tp c v@Σ = (τ : TermP v) → T c (proj1 τ)
tp c v@typeclass = ∀{C} {{_ : TermP v C}} → T c C
tp c v@tuples = ∀{C} → TermP v C → T c C
· · ·

For example, invoking this approach we find that Add, on TermRecord’s, is typed
tp “Add” record, which may be rewritten as
(τ : TermRecord) → TermRecord.Carrier τ → TermRecord.Carrier τ → TermRecord.Carrier
τ . That is, as expected, Add on records consumes a record value then acts as a binary
operation on the carrier of said record value. Likewise, we invite the reader to check
that Add on algebraic datatype TermData is typed as a binary constructor.

Users have access to the elaborated types.

Providing User-Facing Types

TermP.Var : ∀{v} → tp “Var” v
TermP.Add : ∀{v} → tp “Add” v

This is particularly useful when one wants to extract such types for re-use elsewhere.

Extracting a single —possibly complicated— signature

ListBop = TermP.Add datatype ◦ List
{-
∼= ListBop : Set → Set

ListBop C = (List C → List C → List C)
-}

ConstrainedBop : (Set → Set) → Set
ConstrainedBop constraint = TermP.Add typeclass using constraint
{-
∼= ConstrainedBop constraint = ∀{C} → constraint C → C → C → C

-- N.B., this would not elaborate without the “using”.
-- Semantically, “P.x y using z = (P.x y)[P v := z]”
-- —the “v” appears from “∀{v}” above.
-}

SetoidBop = TermP.Add record using Setoid
{-
∼= SetoidBop : Setoid 0 0 → Set
SetoidBop S = Setoid.Carrier C → Setoid.Carrier C → Setoid.Carrier C

-- N.B., this would not elaborate if “Sectoid.Carrier” were undefiend.
-}
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These examples open a flurry of problems.

At this stage, it is sufficient to have observed what could possibly be performed and
that it is not without burden. We will not attempt to clarify any problem nor propose
any solution; the thesis effort will contend with these matters further.

3. The Generality of Package Formers —Sums & Modules

Thus far we have only discussed products; however the proposed general notion of
containers should also produce sum types and be used in modules —which are just
packages.

At “least one” of the operations is desired on a declared carrier type

TermFunctionsSumOn = TermP sum
-- ∼= TermFunctionsSumOn C = (Int → C) (C → C → C)

In general, this yields a disjoint collection of declarations where each declaration is itself
a Σ consisting of the context necessary to ensure that the operations are well-defined.

For modules,

Using our package former within another package

PackageFormer MyDriver (t : TermP record renaming (Carrier to C)) : Set where · · ·
-- ∼= module MyDriver (t : TermRecord[Carrier := C]) where · · ·
-- ∼= module MyDriver (C : Set) (Var : Int → C) (Add : C → C → C) where · · ·

At least two ‘free’ invocation notations ought to be supplied:

(a) MyDriver t

(b) MyDriver type varOp addOp

Multifaceted invocations provide a common use case: No overhead to pack or unpack
the constituents of a type former so the sole purpose of an invocation. However, the
pragmatic feasibility of such an approach is unclear at this stage.

4. Novel Genericity: ‘Package Polymorphism’

We have a sufficient number of elaborations thus far to demonstrate that the notion of
package formers is not without merit. It is now an appropriate moment to address an
elephant in the room: The phrase TermP v semantically refers to which type?

If v = datatype then TermP v refers to the associated algebraic datatype. If v =
record, then there are at least two ways to interpret TermP v: As either the record
type or as the carrier of a record value. Likewise for other variations. For now, we
settle with a monadic-like interpretation: We write do τ ← TermP v; · · · whenever
we wish to refer to the underlying carrier of a concrete package former. Loosely put,
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Syntax —Under the hood

do τ ← TermP v; b ≈ v / (λ τ → b)

v@datatype / f = f (TermP v)
v@record / f = ∀(τ : TermP v) → f ((TermP v).Carrier τ)
v@Σ / f = ∀(τ : TermP v) → f (proj1 τ)
v@typeclass / f = ∀{τ} {{_ : TermP v τ}} → f τ
v@tuples / f = ∀{τ} → TermP v τ → f τ

The ‘over’ notation, _/_, assumes f is a function acting on types; however, this is not
necessary, if the ∀ were replaced with λ, then the result would be a term expression. This
is yet another opportunity for investigation during the thesis effort. Moreover, there is
the possibility of providing “implicit counterparts” to these variations,; e.g., for tuples
one may want ∀{τ} {_ : TermP v τ} → f τ instead, which could be variation, say,
tuples-imp. Likewise, we may want notation do-Σ to replace
∀ · · · → · · · with Σ · · · • · · · .
Unsurprisingly, this approach subsumes our earlier typing elaboration:
tp c v = do τ ← TermP v; T c τ . More concretely, for example, a notion of ‘depth’
for terms may have type ∀ {v} → do τ ← TermP v; (τ → N) —a function that
takes a package and yields a number. In the case of v = record, such a function ac-
tually takes two items: The first being a record value, the second being an element of
the carrier of that record value. In the case of v = typeclass, the function takes an
argument found by instance search. Likewise, for the remaining variations.

Let us now turn to an example of a function operating on the above many, and all,
variations of such packages. This example may appear contrived, yet the power of
this form of polymorphism appears at the end of this subsection where one programs
towards a particular interface and has the result generalised to other variations —a
prime use case is to code against a typeclass representation and use the same methods
on bundled records.

“Times Loop”: Iterate an action n times.

-- Suppose I have the following syntactic construction.
repeat : TermData → N → TermData
repeat t Zero = Var 0
repeat t (Succ n) = Add t (repeat t n)

-- Here is its semantic counterpart.
run : (τ : TermRecord) → TermRecord.Carrier τ → N → TermRecord.Carrier τ
run τ t Zero = TermRecord.Var τ 0
run τ t (Succ n) = TermRecord.Add τ t (run τ t n)

-- Which is merely multiplication for the naturals.
_×_ : N → N → N
t × Zero = Zero
t × (Succ n) = t + (t × n)

The first two are instances of a package former, and it is not diffcult to construe the
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naturals as the carrier of a package former. After which, we should be able to write
one generic function, by writing according to the pacakge former as the interface.

“Times Loop”: Iterate an action n times.

instance
NTerms : TermOn N
NTerms = record {Var = λ n → 0; Add = _+_}

{- IsConsumer is defined below; ignore for now. -}
exp : ∀{v} {{_ : IsConsumer v}} → do τ ← TermP v; τ → N → τ
exp t Zero = Var 0
exp t (Succ n) = Add t (exp t n)

For example, we immediately obtain an instance for strings.

“Times Loop”: Iterate an action n times.

instance
STerms : TermOn (List Char)
STerms = record {Var = λ n → []; Add = _++_}

repeat-s = exp {v = typeclass}
{- Yields a whole family, which includes:

repeat-s0 : {{TermOn (List Char)}} → List Char → N → List Char
repeat-s0 c Zero = []
repeat-s0 c (Succ n) = c ++ repeat c n

-}

Now that’s re-use! One function for many semantically distinct types. Notice that
invoking exp on ListBop or TermFunctionsSumOn values is ill-typed since the mechan-
ically verifiable constraint IsConsumer fails for those variations. Indeed, we may utilise
a number of constraints on our package variations, such as the following.

Under the hood constraints

data IsConsumer : Variation → Set where
Prod : IsConsumer tuples
DepProd : IsConsumer Σ
Data : IsConsumer datatype
Rec : IsConsumer record

When a user defines a variation, they can signal whether it is a consumer or not.
Likewise, one can indicate whether a variation should have Set-valued operations on
not. Note that a default mechanism could be implemented, but the user should continue
to have the ability to enforce a particular discipline —c.f., how C# allows the user to
enforce the subtyping variance of a type former.
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Under the hood constraints

data HasConstructiveRelations : Variation → Set where
Prod : HasConstructiveRelations tuples
DepProd : HasConstructiveRelations Σ
Rec : HasConstructiveRelations record

For example, data declarations cannot contain proofs of an arbitrary, but fixed, con-
structive relation without declaring it as a parameter to the type. Nonetheless, a user
may want to be able to express syntactic statements about such proof terms —say for
proof automation— and they should have the ability to toggle such a feature.

A more important concern is the type of exp: The phrase do τ ← TermP v; τ → N
→ τ elaborates to different types according to the value of v, whence to define exp
it seems necessary to actually pattern match on it to obtain a concrete type, which,
for example, may contain more arguments. Case analysis on the possible packaging
variations is far from ideal —one might as well re-implement the definition only on
the cases they want rather than all cases. The aim —to be pursued further in the full
thesis effort— is to invert the process: Avoid case analysis in favour of a particularly
convenient view.

This is clarified best by referring to the current prototype language: Lisp. Since all
data and methods in a lisp are essentially lists, when one prescribes how to project a
value from a possibly nested datatype, then the same prescription essentially directs
how to get to the location of that value and so we obtain generic setters. The following
tiny example demonstrates this idea.

Generic Setters in Lisp

(setq xs ’("a" nil (x y z) 12)) ;; Heterogenous list of 4 items.
(cadar (cdaddr xs)) ;; ⇒ y
(setf (cadar (cdaddr xs)) ’woah) ;; xs ⇒ ’("a" nil (x woah z) 12))

It is this flexibility that we aim to provide to users. They code not against a generic
variation, but rather along one that is the most appropriate task at hand. We would
hope that it would not be unrealistic to then mechanically derive the other forms from
it. For example, suppose we wish to define retracts on magmas; rather than define the
concept for each possible view, we define it once and obtain it for other views.

Example Algebra

PackageFormer MagmaP (v : Variation) : Set where
_#_ : MagmaP v → MagmaP v → MagmaP v

MagmaOn = MagmaP typeclass
AMagma = MagmaP record

The ubiquity of magmas —literally everywhere— lends itself to recall that working
with structure, possibly needless structure, may usurp the goals of proof [Far18]: No
mathematician would naturally say let M be an algebra on set C when it suffices to say
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let M be an algebra; yet it may be convenient to phrase problems more elegantly when
the carrier set is mentioned explicitly [Gar+09]. On the other hand, having the carrier
explicit for the sake of typeclass resolution relies on decidable type (non)equality; which
may be resonable for a simplly typed language but for a DTL type normalisation gen-
erally requires non-trivial, non-constant, computation. Anyhow, as mentioned earlier,
bundling data is akin to currying or nesting quantifiers, yet is vastly more expensive
since library designers generally commit early to one form or another; in this case
AMagma ∼= Σ C : Set • MagmaOn C and
MagmaOn C ∼= Σ M : AMagma • M.Carrier ≡ C.

Example Operation

retract : ∀{S T} → (f : S → T) → MagmaOn T → MagmaOn S
retract f Tgt = record {_#_ = λ x y → f x # f y} where open MagmaOn Tgt

Since MagmaOn = MagmaP v where v = typeclass, we would ideally be able to derive
the generic form —possibly via case analysis.

Variation Generalisation

retract-v : ∀{v}
→ ∀ {S T} (f : S → T)
→ do tgt ← MagmaP v; tgt ≡ T -- Intentionally no parens.
→ (do-Σ src ← MagmaP v; src ≡ S)

retract-v = · · · -- Unclear at this stage.

The record case could, semi-algorithmically, yield:

Verbose Record Case

retract-v {record} : ∀ {S T} (f : S → T)
→ ∀ (Tgt : AMagma) → AMagma.Carrier Tgt ≡ T
→ Σ (Src : AMagma) • AMagma.Carrier Src ≡ S

retract-v {record} {S} {T} f Tgt refl = record { Carrier = S
; _#_ = λ x y → f x # f y }

, refl
where open AMagma Tgt

From a usability perspective the trivial proofs should not be present and so we need
to algorithmically rewrite the above type to omit them, as follows. We would like to
preserve the argument syntax, retract f Tgt, that was originally declared. Unfortu-
nately, for the record case, the type of f must refer to the types of the other magamas
if we eliminate the trivial equalities. One possible workaround, as follows, is thus to
simply provide a omit the tedious equality proofs since they can be found by instance
search.
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Usable Record Case

retract-v {record} : ∀ {S T} (f : S → T)
→ ∀ (Tgt : AMagma) {{_ : AMagma.Carrier Tgt ≡ T }}
→ proj1 ({{Σ}} Src : AMagma • AMagma.Carrier Src ≡ S)

retract-v {record} f Tgt = · · ·

-- “{{Σ}} (x : A) • B x” consists of a pair
-- where the second is found by instance search.

Notice that we also project at the end since we do not care about the tedious proof;
nor should its existence be forced upon the user.

Before we move on, there is particular reason we have deviated from our TermP example
to the MagmaP concept. The datatype variation for MagmaP does not provide a way to
speak of variables of the data type —indeed MagmaP datatype has no closed terms,
whence no terms at all. It is thus appropriate to now introduce a variation for syntactic
terms over some variable set which is then utilised by a mechanically derivable semantic
function that is freely homomorphic.

From Syntax to Semantics

MagmaTermsOn = MagmaP term-typeclass
{-
∼= data MagmaTermsOn (Vars : Set) : Set where

Var : Vars → MagmaTermsOn Vars
_#_ : MagmaTermsOn Vars → MagmaTermsOn Vars → MagmaTermsOn Vars

MagmaTermsOn-sem : ∀ {v} {A} → do τ ← MagmaP v;
(f : A → τ) → MagmaTermsOn A → τ

MagmaTermsOn-sem {record} S f (Var x) = f x
MagmaTermsOn-sem {record} S f (l # r) = ll s# rr
where _#s_ = AMagma._#_ S

ll = MagmaTermsOn-sem {record} S f l
rr = MagmaTermsOn-sem {record} S f r

· · ·
-}

We will return to homomorphisms later on, for now it is important to notice that some
variations may be useless —as in the empty datatypes. There is also the opportunity
to explore co-inductive datatypes.

5. Common Operations on Package Formers It is rather common in the record variation
to have multiple instances being mentioned and it is desirable to refer to them with
syntactically distinct yet appealing names —such as using subscripts, primes, or other
decoration. Moreover, a notion of homomorphism, structure-preservation, can usually
be automatically inferred.

Here we show what such declarations looks like, later we show that such things could
be user defined.
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An example package former

PackageFormer TermRelP (v : Variation) : Set where
Var : Int → TermRelP v
Add : TermRelP v → TermRelP v → TermRelP v
Rel : TermRelP v → TermRelP v → Set -- This time we have a relation as well.

A prime-decorated package former

Declare PackageFormer TermRelP (v : Variation) decorated (λ x → x ++ "’")
{-
∼= PackageFormer TermRelP’ (v : Variation) : Set where

Var’ : Int → TermRelP’ v
Add’ : TermRelP’ v → TermRelP’ v → TermRelP’ v
Rel’ : TermRelP’ v → TermRelP’ v → Set

-- Coherence Meta-property: ∀ v, d • TermRelP v decorated d ∼= TermRelP v
-}

Structure preserving operations

Declare Homomorphism TermRelP (v : Variation)
{-
∼= PackageFormer TermRelP-Homomorphism (v : Variation) : Set where

Src : TermRelP v decorated (λ x → x ++ "1")
Tgt : TermRelP v decorated (λ x → x ++ "2")

map : Src → Tgt
-- Elaborates to “Carrier Src → Carrier Tgt” in “record” variation.

var_preservation : ∀ n → map (Var1 n) ≡ Var2 n
add_preservation : ∀ x y → map (Add1 x y) ≡ Add2 (map x) (map y)
rel_preservation : ∀ x y → Rel1 x y → Rel2 (map x) (map y)

NB: The “decorated” annotations are local to the package.
-}

6. Inheritance & Defaults for Package Formers

Things get a bit more interesting with multiple packaging, fields making use of depen-
dent types, and of (multiple) default implementations. Besides defaults, a desirable
feature of our envisioned system is the ability to lift definitional extensions into fields
of the package, say for more efficient implementations.

Recall our example package former

PackageFormer TermP (v : Variation) : Set where
Var : Int → TermP v
Add : TermP v → TermP v → TermP v
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All the pieces of TermP but now with additionall new pieces

PackageFormer PreOrderedTermP (v : Variation) : Set inherits-from (TermP v) where
Ord : OrderedTermP v → OrderedTermP v → Set
Refl : ∀ x → Ord x x
Trans : ∀ x y z → Ord x y → Ord y z → Ord x z

-- Two default ‘implementations’

default1 Ord x y = x ≡ y
default1 Refl x = refl
default1 Trans _ _ _ refl refl = refl

default2 Ord x y = >
default2 Refl x = tt
default2 Trans _ _ _ _ _ = tt

Notice how “free type” formation incorporates this new open-ended construct, Ord, as
a two-value holder. An alternative interpretation would be to eliminate it altogether
from the elaborated data declaration. Anyhow, since we elaborate a relation as a pair
former, proofs for such a relation cannot be included —otherwise it’s not a “free” type!

Derivied ADT from a package former with constructive relations

PreOrderedTermData = PreOrderedTermP data
{-
∼= data PreOrderedTermData : Set where

Var : Int → OrderedTermData
Add : PreOrderedTermData → PreOrderedTermData → PreOrderedTermData
Ord : PreOrderedTermData → PreOrderedTermData → PreOrderedTermData

-- No reflexitivity axiom on ‘Ord’, nor transitivity!
-}
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Using a default implementation

PreOrderedTermData = PreOrderedTermP data with-default1
{-
∼= data PreOrderedTermData : Set where

Var : Int → OrderedTermData
Add : PreOrderedTermData → PreOrderedTermData → PreOrderedTermData

-- No ‘Ord’ construction, but instead a constructive relation and properties:

Ord : PreOrderedTermData → PreOrderedTermData → Set
Ord x y = x ≡ y

Refl : ∀ x → Ord x x
Refl x = refl

Trans : ∀ x y z → Ord x y → Ord y z → Ord x z
Trans _ _ _ refl refl = refl

-}

The naming Ord, Refl, Trans could have been altered to refer to the newly declared
data type, for simplicity we have avoided such a transformation. Moreover, we could
reserve with-default0 to simply omit constructive relations from being reified as data
constructors.

Keeping the axioms by using a record

PreOrderedTermRecord = PreOrderedTermP record
{-
∼= record PreOrderedTermRecord : Set where

field
Carrier : Set
Var : Int → Carrier
Add : Carrier → Carrier → Carrier
Ord : Carrier → Carrier → Set
Refl : ∀ x → Ord x x
Trans : ∀ x y z → Ord x y → Ord y z → Ord x z

-- Notice that the reflexitivity & transitivity axioms are kept!
-}

Moreover, the default implementations means we also have the following declaration,
where distinctions are made by the occurenace, or absence, of fields.
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Defaults yield additional elaborations

{-
record PreOrderedTermRecord : Set where
field
Carrier : Set
Var : Int → Carrier
Add : Carrier → Carrier → Carrier

Ord : Carrier → Carrier → Set
Ord x y = x ≡ y

Refl : ∀ x → Ord x x
Refl _ = refl

Trans : ∀ x y z → Ord x y → Ord y z → Ord x z
Trans _ _ _ refl refl = refl

-}

Here is our first observation of a uniform presentation of packaging, where the “intended
use” differs: Whether we want axioms or not?

Not only is the use amicable, but utilities written for the first elaboration effortlessly
apply to instances of the second elaboration. Unfortunately, the relationship is not
symmetric —e.g., using the additional information provided by the default implemen-
tations, ∀ x y → Ord x y → Add x y ≡ Add y x is provable for the latter but not
the former. As such, there is need to be able to mark results applying to a subtype
of a package former, or to eliminate such a desirable feature that reduces needless dis-
tinctions when applying utilties of the former to the latter. The thesis will provide a
solution with a discussion of the alternatives and why they were not adopted.

7. Package Formers Dispense with The Diamond Problem

Let’s consider combining multiple containers.

A package former for unital magmas

Package UnitalTermP (v : Variation) : Set inherits-from (TermP v) where
unit : UnitalTermP v
lid : ∀ x → Add unit x ≡ x
rid : ∀ x → Add x unit ≡ x

Inheriting from multiple pacakage formers

Package PreOrderedMonoid (v : Variation) : Set
inherits-from (UnitalTermP v; PreOrderedTermP v)

where
associative : ∀ x y z → (Add x y) z ≡ Add x (Add y z)
monotone : ∀ x x’ y y’ → Ord x x’ → Ord y y’ → Ord (Add x y) (Add x’ y’)

This package ought to be indistinguishable from the following, whence allowing tremen-
dously flexible declarations and uses. In particular, there is no longer a need to dis-
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tinguish between a hierarchical and a flattened perspective, since they are considered
identical.

Equivalent backend representation

Package PreOrderedMonoid (v : Variation) : Set where

unitaltermp : UnitalTermP v
preorderedtermp : PreOrderedTermP v

associative : ∀ x y z → (Add x y) z ≡ Add x (Add y z)
monotone : ∀ x x’ y y’ → Ord x x’ → Ord y y’ → Ord (Add x y) (Add x’ y’)

-- From which sub-structure does the above “Add” arise?
--
-- The “record” and “typeclass” variations elaborate with axioms declaring
-- that identical names are indeed identical operations:
carrier_coherence : unitaltermp.Carrier ≡ preorderedtermp.Carrier
var_coherence : unitaltermp.Var ≡ preorderedtermp.Var
add_coherence : unitaltermp.Add ≡ preorderedtermp.Add
--
-- They also elaborate with default tedious implementations:
carrier_coherence = refl; var_coherence = refl; add_coherence = refl

-- Moreover, we can continue the ‘default’ implementation.
default1 monotone _ _ _ _ refl refl = refl
default2 monotone _ _ _ _ _ _ = tt

8. Package Formers & Representational Shifts

Let us close this section by demonstrating how this genericity can aid in ubiquitous
representational shifts that appear rather often in dependently typed programming. In
pedestrian languages, there are usually less ways to accomplish a task in dependently
typed languages and so programming style is not of great concern. In contrast, in a
DTL, a user could, for example, work over an abstract data type where a particular
argument is fixed or where it is allowed to vary. The two approaches are a matter of
style, but can lead to awkward situations.

More concretely, we consider the bread and buffer of coding: Graphs. Without depen-
dent types we can only speak about graphs over a given vertex type, with dependent
types we can speak about a graph, irrespective of vertex type. The former is tan-
tamount to the context Vertex : Type ` Edges : Vertex → Vertex → Type, and
an empty assumption context ` Vertex : Set, Edges : Vertex → Vertex → Type
for the latter. However, the latter form sometimes leads us into contexts where we have
two graphs G and H for which we make the tedious constraint
Vertex G ≡ Vertex H. It would be less clumsy to explicitly declare the two graphs to
be over the same vertex type.

The previous paragraph mentioned a terse dependently-typed presentation of graphs,
let us use the classic presentation as it may be more familiar to readers.
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Graph package former

PackageFormer GraphP (v : Variation) : Set where
Vertex, Edges : Set
src, tgt : Edges → Vertex

-- The dependently typed notion of edges.
derivied
_−→_ : Vertex → Vertex → Set
x −→ y = Σ e : Edges • src e ≡ x ∧ tgt e ≡ y

Graphs as records

AGraph = GraphP record renaming (Carrier to “Vertex”)
{-
∼= record AGraph : Set where

field
Vertex Edges : Set
src tgt : Edges → Vertex

-}

-- NB. The implicitly generated name “Carrier” has been identified with
-- the *declared* name “Vertex”. This is acceptable since they have the same type.
-- Without the identification, the record elaboration would have provided a
-- third type field named “Carrier”.

Parameterised graphs as typeclasses

GraphOver = TermP typeclass renaming (Carrier to “Vertex”)
{-
∼= record GraphOver (Vertex : Set) : Set where

field
Edges : Set
src tgt : Edges → Vertex

-}

With these in hand, our goal is to replace the following first line with the second.
However, since both types GraphOver and AGraph are declared as one liners, such a
transition is a cheap as possible.

Parameterised graphs as typeclasses

(G H : AGraph) → Vertex G ≡ Vertex H → · · ·

(V : Set) → (G H : GraphOver V) → · · ·

In order to replace a semantic constraint with a syntactic constraint the user simply
need to use a variant on packaging. Furthermore, we are ensured
AGraph ∼= Σ V : Set • GraphOver V.

Dependently-typed graphs are an curious structure. With a bit of renaming, and adding
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a few laws, we obtain a ‘setoid’ –i.e., an undirected graph where every node has a self-
loop, and paths correspond are essentially edges.

Setoid package former

PackageFormer SetoidP (v : Variation) : Set where
-- Graph structure
Carrier : Set
_≈_ : Carrier → Carrier → Set
-- Properties
refl : ∀{e} → e ≈ e
sym : ∀{d e} → e ≈ d → d ≈ e
trans : ∀{c d e} → c ≈ d → d ≈ e → c ≈ d

A non-dependently-typed ‘signature’ of a structure is generally obtained by discarding
the relational operators and all properties. For SetoidP one would immediately think
the signature consists of just Carrier. However, if we view it instead as undirected
graphs with self-loops at each node and edge-transitivity, then one would say the signa-
ture is the vertices Carrier and the edges _≈_. It is thus not clear when an item, _≈_
or _−→_, forms constructive proofs or provides a type family. As such, signature ex-
traction thus requires a parameter identifying which elements constitute ‘proof matter’
—then one simply filters a pacakge-former against this criterion to obtain the associ-
ated signature. More generally, this allows us to take an X structure and obtain may of
its the associated views about where knowledge is consolidated [CFK14], including:

Setoid package former

X = 〈 Carrier; Operations; Properties 〉 -- C.f., SetoidP
XOver C = 〈 Operations; Properties 〉
IsX C Ops = 〈 Properties 〉
XSig = 〈 Carrier; Operations〉 -- C.f., GraphP

Having the signature in hand, one can easily and mechanically generate many derivied
concepts. For example, a ‘homomorphism’ is a family of functions of the underlying
sorts such that the given operations are preserved. Likewise, equality of homomor-
phisms is extensional equality of the underlying maps. One can then generate closed
and open terms and their interpretation functions. With this approach to signature ex-
traction, we can use the same algorithms for the production of, say homomorphisms or
other constructs, on completely different algebraic structures, whether they be monoids
or graphs. Moreover, this implies that concepts generally not considered for a class of
algebras can easily be derived and experimented with; likewise for exploring new alge-
braic theories. These matters are an application, rather than a goal, of our envisioned
system.

The curiosity of graphs is that they are one of the simplest two-sorted structures and one
of the most common in computing. Counter to intuition, existing packaging systems,
namely canonical structures and typeclasses, are oriented toward having a distinct
parameter: They cannot work well with multi-parameters; like classical single-sorted
algebra. However, the both aim to solve a usability problem: Having to spell out
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everything is too tedious. Typeclasses are essentially dictionary look-up, having unicity
as an issue. Whereas canonical structures require familiarity with how unifer works
–we provide enough information to the unifer to find the desired structure– but, in
general, canonical structures do not scale. It is one of the thesis efforts to ensure the
the unionised approach scales by a complex example with clear avenues of extension.

It should be clear from these examples that package formers provide expectant gener-
ality, including the common uses one is mostly interested in. What about unexpected
uses? What if a user wishes to utilise a representation we did not conceive of? They
should be able to use the existing language to form it.

3.4.2 Second Observation: Computing Similarity for Containers

By necessity of the first corollary, we are forced to utilise a uniform language between the
varying notions of packaging thereby relegating their treatment to be a normal aspect of a
language’s core vernacular, rather than an extra-linguistic feature. The previous examples
hint at possible issues regarding well-definedness of certain constructs. Moreover, we only
elaborated on a few compositional operations, inherits-from, renaming, decorated, yet
users may well wish to utilise their own compositional schemes and so it is imperative that
we allow them such a flexibility. Consequently, users ought to be able to define their own
compositional mechanisms, thereby necessitating that they be able to manipulate package
declarations themselves which in-turn forces the language to be somewhat homoiconic. More-
over, to avoid a hierarchy of languages, the facility for manipulating package declarations must
itself be a part of the core language, rather than an extra-linguistic feature —c.f., Coq’s Ltac.

In our envisioned setup, every PackageFormer declaration adds a clause to a special
function,

Under the hood

packageInfo : PackageFormer → PackageInfo
packageInfo = compiler defined

Where a PackageInfo consists of Name, which is a list of parameter names and types,
along with the name of the package former; and Declarations, a list of name-type pairs
whose last element is the target type.
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PackageInfo: Just another package —for “signatures”

{- Draft: Lots of string manipulation, not ideal. -}
record PackageInfo : Set where
field
Name : List (String × String) × String
Declarations : List (String × List String)

--
-- This is just another package,
-- it incidentally happens to be the representation of packages!

It is to be noted that there is no commitment to a string-based representation. It is only
a prototype and the thesis will likely move to a better typed representation —otherwise, we
may run into too many problems of ill-formed package formers.

Recall our example package former

PackageFormer TermP (v : Variation) : Set where
Var : Int → TermP v
Add : TermP v → TermP v → TermP v

The above declaration provides, under the hood, the following clause to packageInfo.

Under the hood

packageInfo TermP = record { Name = ["v", Variation] , "TermP"
; Declarations = [ ("Var", ["Int", "TermP v"])

, ("Add", ["TermP v", "TermP v", "TermP v"])
]

}

We are now in a position to provide the semantics for the keyword Declare, from the
previous section. It takes a PackageInfo and declares a PackageFormer. There should be a
compile-time warning if such declarations are meaningless, ill-formed.

For example, the previous
Declare PackageFormer TermRelP (v : Variation) decorated (λ x → x ++ "’") can
thus be obtained by a user by defining decorated as an operation on packages!

User-defined composition scheme

_decorated_ : PackageInfo → (String → String) → PackageInfo
pk decorated f = record { Name = bimap id f pk.Name

; Declarations = fmap (bimap f id) pk.Declarations
}

To rectify the seemingly wild mixfix notions, we request from the compiler the following
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suitably general syntactic sugar. An operation, call it, altered-by of the type PackageInfo
→ List PackageInfo → List X → PackageInfo automatically obtains the syntactic sugar
p altered-by (q0; ...; qk) with (f0; ...; fN)—c.f., the inherits-from syntax above.

With such terse functional programs for forming composition schemes, there is no need
to build much into the compiler.

Users can define other similar operations, such as decorated-rounded which replaces
the first two binary relations’ names with ⊆ and ⊂; or decorated-square to make the
renamings v and @. Additionally, such renames would propagate into any axioms or derived
laws. Moreover, the flexibility to invoke such operations in complex ways allows for intricate
renamings to be generated at tremendous scale without worry that future renames would
need to be made if the orginal packages included new items. Numerous examples of such
renaming transpire manually in the impressive RATH [Kah18] development, as well as in
Agda’s standard library.

When working with multiple values of the same record type, for example, one encounters
a usability problem: Refereeing to the constituents without being verbose. The simplest
solution is to qualify each invocation, as in instance.field, however this is rather cumber-
some, inelegant, and is awkward for mixfix names. An alternative is to locally rename the
fields according to a scheme reflecting their use. For example, in a produce construction of
5 items, the field names would be renamed to have a subscript number. In a setting of two
instances, a user may instead prefer a primed and an undecorated version of field names.
Thus far, by hand we have created these tedious subscript and primed renamings, with our
envisioned systems, we need no longer worry about such boilerplate.

In nearly the same fashion, a user could have defined the inherits-from compositional
scheme. Such a scheme may assume that all identically named items have the same types,
and crash otherwise. A user could define a better scheme that takes a renaming function,
or another function to handle the crash, or simply omitt conflicting names altogether. The
examples suggest that many commonly occurring compositional mechanisms [CO12] can be
directly provided by a library, rather than by a particular compiler —this includes the ability
to hide fragments, expose the largest well-defined fragment, and to combine packages along
a given substructure.

Rather than select what we think is best, we can simply provide the general mechanism
to the library designer and allow them the freedom to provide their own schemes.

3.4.3 Next Steps

Our brief examples demonstrate that the less design decisions about packaging made by lan-
guage designers, the more general, applicable, and, most importantly, increased homogeneity
in the resulting datatype language without becoming unityped but rather thanks to being
dependently-typed. As mentioned in the previous section on existing approaches, one for-
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malism for packages is that of theories and theory combinators; below we thus draw on some
problems from theory combinators rendered toward packaging systems.

We have mentioned that the record and typeclass perspectives solve the common re-
quirement of structures sharing an identical field. Other than that, we have essentially only
outlined a general mechanism for declaring packages and compositional schemes, but have
not discussed which are the most common and most useful packaging combinators. It is also
desirable to discuss the formal properties of such combinators —if anything, to ensure they
are sensible and behave as expected. Moreover, which combinators act as a basis for all
packaging combinators? Whence their use ensures the resulting composition is well-formed
and they could be targeted for optimisations.

To make our approach accessible, the generic package operations are brought to the user
rather than baked into the compiler —too great a distance for most users. The Declare
syntax reifies PackageInfo’s into package declarations, but we have not mentioned under
what constraints it can actually provide compiler-time, or typechecking-time, errors of ill-
formedness. Moreover, how (in)efficient is this process? Could it be extended to work on
variable, runtime provided, declarations for refying packages? Perhaps there is a constraint
that suffices for the most common cases? Moreover, having observable PackageInfo’s being
automatically generated for every package declaration renders representation hiding nearly
moot.

The proposed approach boarders on meta-programming. Can type erasure and other
compiler-specific optimisations be brought into the homoiconic-like setting being pursued
here? We have mentioned a few ‘built in’ variations for packaging; can such a feature be
liberated from the compiler and be bent to the users’ will? We would need the ability to
explain how a package elaborates.

Tremendous flexibility is demanded from the back-end so as to ignore needless distinctions
at the users’ level. Whereas the practicality is promising, the feasibility of an implementation
for such ambiguous parsing [CZ04] is unclear. It is also unclear what effects identifying
syntactically distinct items has on, say, normalisation and propositional equality.

The numerous claims and associaited bookkeeping of details pushes us into using a proof
assistant, Agda.

Our examples have been ‘variation’ polymorphic; we have been even more generic by
defining decorated. What are the limits of programming genericity provided by our scheme?
It would unsurprising if this approach yields the next 700 module systems.
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Chapter 4

Approach and Timeline

Packages, modules, classes, (dependent) records, (named) contexts, telescopes, theories, spec-
ifications —whatever you wish to call them are essential structuring principles that enable
modularity, encapsulation, inheritance, and reuse in formal libraries and programs. Moreover,
as we have demonstrated, with the exception of use-cases, there are no significant differences
between them in a dependently-typed setting, as [MRK18] present a type theoretic calculus
of a variant of record types that corresponds to theories.

4.1 Implementation Matter

We will realise our proposal in an existing compiler and so working with it necessitates
our implementations to be more than just ‘research quality’ but actually ready for a broad
audience.

Which compiler and for which language?

Since our attention is focused on dependently typed languages within the realm of Martin-
Löf’s Type Theory [Mar85], Agda [Jef13] is a natural candidate.

Agda is currently one of the most used tools for proof and program experimentation
involving dependent types. With its support for mixfix Unicode lexemes, it has become
a strong competitor to Coq [Coq18b; PP89; CH88] for both proof construction [ZDG18;
Pop18; AHL17; CTB14; SS13; MKJ09] and general program construction [Jef13; Kan12;
Set18a; FSS15] —Agda’s lack of syntactic distinction between programs and propositions,
along with its pattern matching utilities in-place of ‘tactic sledgehammers’ [Abo06], it has also
become an attractive language for introducing dependent types and functional programming
[Stu16; WK18; Set18b]. With its syntactic similarity to Haskell, many Agda users treat their
Agda code as if it were lazy with the let and where clauses preserving sharing —which is not
the case, since such clauses rewrite to top-level functions [Agd18]. Instead, Agda’s evaluation
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strategy is normal order: Function definitions are invoked before arguments are evaluated,
but computations of arguments are not shared. This is a prime location for efficiency issues
since type-checking in a dependently typed language tends to involve evaluation of terms.
Surprisingly this has not stopped users from producing large-scale software developments
[Kah18; Kan12; Jef13].

Needless to say, a poor choice of elaboration strategy can lead to a loss of sharing —not
that Agda has sharing to begin with—, contain too many undesirable side-effects, hinder ef-
ficiency, or forgo compile-time optimisations. For example, Agda, as currently implemented
using the Glasgow Haskell Compiler (GHC), is a realisation of Martin-Löf’s Type Theory
(MLTT) that is heralded as both a programming language and proof assistant. Unfortu-
nately MLTT, as many other dependent logics —such as the Calculus of Constructions with
inductive types, which underlies both the Coq and Lean proof assistants— does not account
for modules, thereby leaving these as consistency-preserving hacks thrown onto the imple-
mentation. As mentioned earlier, Agda simply rewrites modules into top level functions
with module parameters realised as parameters to the resulting functions. This is an imple-
mentation detail and has little impact on theory construction, however, code reuse becomes
unreasonably slow due to the loss of sharing that happens when module arguments need
to be re-normalised in each function-counterpart. Consequently, only a minor subset of the
Agda community actually executes their programs. The rest of the community is generally
content with type checking only; which does not hinder the reliability of proof.

It is important to note that we employ Agda only as a proof-of-concept for our pro-
posed exploration of first-class structuring-mechanisms in dependently typed languages. Ad-
mittedly Agda’s support for Unicode mixfix lexemes makes it a pleasure to work in, with
mechanised proofs being little work more than their LATEX renditions.

4.2 Next Steps

The approach we intend to follow consists of the following steps. Notice that feedback loop
of practice into theory.

1. Distill the true requirements for a solution; ensure good fit for purpose criteria exists.

� Understand the requirements of ‘modularity mechanisms’ for DTLs.

� Narrow down a design by choosing a set of requirements.

� Identify necessary, and practical, trade-offs. Conflicting feature sets? Usability?

� Ideally we want our implementations to avoid too much overhead, such as creating
an entire new language; this may necessitate the weakening of other functionality.

2. Deepen understanding of the opportunities given by DTL.
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� Understand the relationships between modules, records, contexts, telescopes, and
signatures.
◦ Do they have differing ‘types’?
◦ As types themselves, do they have differing ‘values’?
◦ In the setting of DTLs, are they essentially isomorphic?
◦ What are the intended uses? What intentions do particular choices commu-

nicate?
? E.g., “x = y” communicates an equality and nothing more, whereas

“x ⇐⇒ y” communicates a Boolean equality: A redundant, particu-
larised, equality symbol serves to succinctly and elegantly communicate
more information.

3. Formulate basic, draft, semantics for a small set of DTL module primitives.

� What is the type of a package former?
� How does it fit into Agda’s existing type hierarchy?
� What are the types of the primitives themselves?
◦ We wish to avoid metaprogramming after all, and so wish to remain within

the language rather than in a metalanguage.

4. Prototype some mechanisms; a combination of old, adapted, and novel ones to demon-
strate the power of the system.

� Implement the structuring mechanism combinators discussed earlier —such as
combination over common-substructures.
◦ Possibly begin with reifying first class grouping mechanisms by representing

contexts —i..e, sequences of declarations with optional definitions— as records
in Agda with the undefined declarations being fields and the rest being derived
or definitional.

5. Evaluate the mechanisms —using fit-for-criteria.

� Since the realisation would be in Agda, we would keep in touch with the community
to ensure that the additions contribute to program design.
� Evaluate the strength of the resulting additions in terms of practical use for library

designers as well as in terms of program speed.

6. Make sure to have a denotational semantics for the mechanisms.

� Ensure that the additions are minimal, orthogonal, and construct a sound type
theory around them.

7. Refine 2-6 until elegance, or deadline, is reached, whichever comes first.

Our timeline will discuss how we will carry out this approach in multiple passes and will
discuss the conditions of a successful pass.
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4.3 Timeline

We shall iterate through the ‘approach phase’ three times, utilising a feedback loop of practice
into theory. The phases are discussed below.

As our results will likely need to be re-proven for definitional adjustment, we intend to
mechanise all of our proofs in Agda as well —when possible. Therefore, Agda plays multiple
roles: A dependently-typed language to experiment with, as well as a proof checker for our
results.

4.3.1 The First Pass: May-October 2019

This stage concludes successfully provided the following checkpoints are achieved.

� A thorough understanding of what is being done by others, and how our approach
differs, is obtained and documented.

� Understand the Agda compilation ecosystem, provide a report on how to make alter-
ations to it, and actually implement at least one structuring mechanism and provide
use cases as well as preliminary efficiency analysis.

� A publication covering existing mechanisms, their features and flaws, and possibly an
explanation of why there is theoretical work on these issues but little to no implemen-
tation on them —with a focus on practical uses and possible hurdles to use.

◦ A side-effect of this is to produce an evaluation strategy for the mechanisms.

◦ Moreover, this necessitates looking into the associated semantics, evaluating them,
and proposing semantics for the mechanism we have designed.

� Thesis writing should have begun and nearing completion are sections on introduction
and background.

4.3.2 The Middle Pass: November 2019 - February 2020

This stage concluded successfully provided the following checkpoints are achieved.

� The success of the previous stage ensures an understanding of the Agda compilation
ecosystem, as such it should take less time to implement the more mechanisms, theory
combinators. The goal is to have the remaining mechanisms implemented, with a focus
on the combination-over-a-structure mechanism.
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◦ With each implementation, reach-out to the Agda community to solicit feedback
regarding improvements and possible use cases.

� Extending the semantics for the newly implemented mechanisms.

◦ Evaluating which mechanisms are more primitive, which are derived, and which
can be used to allow users to make their own using the concrete language itself !

� A publication of case studies utilising these combinators, as well as a comparison of
how these are an improvement over traditional methods.

◦ Analysing the interactions between features; does the addition of one hinder an-
other.

◦ Empirical tests for efficiency and utility.

� Thesis writing should have progressed with sections on use cases, semantics, and feature
design, having substantial matter if not nearing completion.

4.3.3 The Final Pass: March - April 2020

This stage concluded successfully provided the following checkpoints are achieved.

� Ensure that our implementations are meeting our requirements for a solution.

� Begin mechanisation of proofs authenticating that the denotational semantics has de-
sired, expected, properties; such as soundness and safeness.

4.3.4 Concluding Phase

Wrap up all proof matters and finish the thesis.

Suffice to say life tends to be more hectic than a schedule may permit and as such some
times may deviate from the above intentions. Regardless, the goal will be to complete the
thesis within 2 years time; in particular before September 2020.
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Chapter 5

Conclusion

As already discussed, more often than not a module system is an afterthought secondary
citizen whose primary purpose is to act as a namespace delimiter —e.g., C#’s namespace
construct— while relatively more effort is given to their abstraction encapsulation counter-
part, e.g., C#’s class’es. Some languages’ module systems blend both namespace man-
agement and implementation hiding, e.g., as in the Haskell programming language. Other
languages such as OCaml take modules even further: Not only are modules used for names-
pace organisation and datatype abstraction, but they can also be passed around as values
for manipulation as if they were nothing special, thereby collapsing the distinction between
record constructs and organisational constructs.

The proposed research is to build upon the existing state of module systems and develop
an extension to a compiler to substantiate our claims, and to ultimately discover new seman-
tical relationships between programming language constructs in a dependently typed setting
with modules as first-class citizens. This involves redesigning and enhancing existing module
systems to take into account dependent types as well as producing rewrite theorems to ensure
acceptable performance times.

Intended outcomes include:

1. A clean module system for DTLs

� Dependent types blur many distinctions therefore rendering certain traditional
programming constructs as inter-derivable and so only a minimal amount need be
supported directly, while the rest can be defined within the extended type theory
we will be creating. Since modules are records, which are one-field algebraic data
types, and we can form sums of modules, it would not be surprising if first-class
modules suffice for arbitrary data type definitions.

2. Utility Objectives : A variety of use-cases contrasting the resulting system with previous
approaches. In particular, the system should:
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� Reduce amount of ‘noise’ necessary for working with grouping mechanisms in a
number of ways.

� It should be easy and elegant to use and, possibly, to extend.

3. A module system that enables rather than inhibits (or worse) efficiency.

� Currently Agda modules, for example, are sugar for extra functional parameters
and so all implicit sharing in modules is lost at compilation time.

� Deeply nested, deeply tagged, operations could be costly and so being apply to
soundly flatten modules and soundly extract operations and results is a necessity
when speed is concerned —moreover, this needs to be mechanical and succinct if
it is to be useful.

4. Demonstrate that module features usually requiring meta-programming can be brought
to the data-value level.

� Names and types, for example, in a module should be accessible and alterable.
For example, we can obtain a rig by combining two instances of a monoid module
where we would rename the fields of one, or both, of them.

� Thereby relegating abstract syntax tree and programs-as-strings manipulations to
the edges of the computing environment.

Most importantly, we intend to implement our theory to obtain validation that it “works”!
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