
Musa Al-hassy https://github.com/alhassy/RubyCheatSheet September 6, 2019

Ruby Reference Sheet

Administrivia

⇒ Ruby has a interactive command line. In terminal, type irb.

⇒ To find your Ruby version, type ruby --version; or in a Ruby script:

RUBY_VERSION # ⇒ 2.3.7

In general, use backtics ‘· · · ‘ to call shell commands
‘ls -ll ~‘ # ⇒ My home directory’s contents!

⇒ Single line comments marked by #.
. Multi-line comments enclosed by =begin and =end.

⇒ Newline or semicolon is used to separate expressions; other whitespace is irrelevant.

⇒ Variables don’t have types, values do.

� The type of a variable is the class it belongs to.

� Variables do not need declarations.

Everything is an object!

Method calls are really message passing: x ⊕ y ≈ x.⊕(y) ≈ x.send "⊕" , y

Methods are also objects: f x ≈ method(:f).call x

Remember: Use name.methods to see the methods a name has access to. Super helpful
to discover features!

"Hi".class # ⇒ String
"Hi".method(:class).class # ⇒ Method
"Hi".methods # ⇒ Displays all methods on a class ♥^♥
2.methods.include?(:/) # ⇒ true, 2 has a division method

Everything has a value —possibly nil.

� There’s no difference between an expression and a statement!

Functions – Blocks

Multiple ways to define anonymous functions; application can be a number of ways too.

Parenthesises are optional unless there’s ambiguity.

� The value of the last statement is the ‘return value’.

� Function application is right-associative.

� Arguments are passed in with commas.

fst = lambda { |x, y| x}
fst.call(1, 2) # ⇒ 1
fst.(1, 2) # ⇒ 1

Supply one argument at a time.
always7 = fst.curry.(7)
always7.(42) # ⇒ 42

Expplicitly curried.
fst = lambda {|x| lambda {|y| x}}
fst = ->(x) {->(y) {x}}
fst[10][20] # ⇒ 10

fst.(100).(200) # ⇒ 100

fst.methods # ⇒ arity, lambda?,
parameters, curry

def sum x, y = 666, with: 0
x + y + with end

sum (sum 1, 2) , 3 # ⇒ 6
sum 1 # ⇒ 667
sum 1, 2 # ⇒ 3
sum 1, 22, with: 3 # ⇒ 6

Notice that the use of ‘=’ in an argument list to mark arguments as optional with de-
fault values. We may use keyword arguments, by suffixing a colon with an optional
default value to mark the argument as optional; e.g., omitting the 0 after with: makes
it a necessary (keyword) argument. Such may happen in |· · · | for arguments to blocks.

Convention: Predicate names end in a ?; destructive function names end in !.
That is, methods ending in ! change a variable’s value.

Higher-order: We use & to indicate that an argument is a function.

def apply(x, &do_it) if block_given? then do_it.call(x) else x end end
apply (3) { |n| 2 * n } # ⇒ 6, parens around ‘3’ are needed!
apply 3 do |n| 20 * n end # ⇒ 6
apply 3 # ⇒ 3

In fact, all methods have an implicit, optional block parameter. It can be called with the
yield keyword.

sum(1, 2) do |x| x * 0 end # ⇒ 3, block is not used in “sum”

def sum’ (x, y) if block_given? then yield(x) + yield(y) else x + y end end
sum’(1, 2) # ⇒ 3
sum’(1, 2) do |n| 2 * n end # ⇒ 6
sum’(1, 2) do end # ⇒ nil + nil, but no addition on nil: CRASHES!
sum’(1, 2) { 7 } # ⇒ 14; Constanly return 7, ignoring arguments; 7 + 7 ≈ 14

Note: A subtle difference between do/end and {/} is that the latter binds tightly to the
closest method; e.g., puts x.y { z } ≈ puts (x.y do z end).

Variadic number of arguments:

def sum” (*lots_o_stuff) toto = 0; lots_o_stuff.each{ |e| toto += e}; toto end
sum” 2 , 4 , 6 , 7 #⇒ 19

Turn a list into an argument tuple using “splat”, ‘*’
nums = [2, 4, 6, 7, 8, 9]
sum” nums #⇒ Error: Array can’t be coerced into number
sum” *nums.first(4) #⇒ 19

If a name is overloaded as a variable and as a function, then an empty parens must be
used when the function is to be invoked.

1

http://www.cas.mcmaster.ca/~alhassm/
https://github.com/alhassy/RubyCheatSheet
https://stackoverflow.com/questions/89650/how-do-you-pass-arguments-to-define-method/11098487#11098487

w = "var"
def w; "func" end
"w: #{w}, but w(): #{w()}" # ⇒ w: var, but w(): func

How to furnish a single entity with features? “Singleton methods/classes”! You can attach
methods to existing names whenever you like. (Instance vars are nil by default.)

x = "ni"
def x.upcase; "Knights who say #{self} × #{@count = (@count || 0) + 1}" end
x.upcase # ⇒ Knights who say ni × 1
x.upcase # ⇒ Knights who say ni × 2

Other items are unaffected.
"ni".upcase # ⇒ NI, the usual String capitalisation method

In general, the syntax class « x · · · end will attach all usual class contents “ · · · ” only
for the entity x. (Undefined instance variables are always nil.)

We can redfine any method; including the one that handles missing method issues.

x.speak # ⇒ Error: No method ‘speak’
Do nothing, yielding ‘nil’, when a method is missing.
def method_missing(id, *args) end
x.speak # ⇒ nil

A “ghost method” is the name of the technique to dynamically a create a method by
overriding method_missing. E.g., by forwarding ghosts get_x as calls get(:x) with ex-
tra logic about them.

Operators are syntactic sugar and can be overrided. This includes the arithmetical ones,
and [], []=; and unary ± via +@, -@.

def x.-(other); "nice" end
x - "two" # ⇒ "nice"

Forming aliases:
alias summing sum”
summing 1, 2, 3 # ⇒ 6

Methods as Values

Method declarations are expressions: A method definition returns the method’s name as
a symbol.

def woah; "hello" end # ⇒ :woah

woah’ = method(:woah) # ⇒ #<Method: Object#woah>

woah’.call # ⇒ hello

method(:woah).call # ⇒ hello

Notice that using the operation method we can obtain the method associated with a
symbol.

Likewise, define_method takes a name and a block, and ties those together to make a
method. It overrides any existing method having that name.

The following is known as “decoration” or “advice”!

Besides decorating a function call to print a trace like below, it can be used to add extra
behaviour such as caching expensive calls, mocking entities for testing, or doing a form
of typing (Ruby is a Lisp).

define_method(:ni) {|x| x}

def notify(method_name)
orginal = method(method_name)
define_method(method_name) { |*args, &blk|
p "#{method_name} running ... got #{orginal.call(*args, &blk)}"} end

notify def no_op (x) x end

no_op 1 # ⇒ no_op running ... got 1

“x.singleton_class.include(M)” to wholesale attach module M’s contents to x.

See here for a nifty article on methods in Ruby.

Variables & Assignment

Assignment ‘=’ is right-associative and returns the value of the RHS.

Flexible naming, but cannot use ‘-’ in a name.
this_and_that = 1
uNiC∅DE = 31

Three variables x,y,z with value 2.
x = y = z = 2

Since everything has a value, “y = 2” ⇒ 2
x = 1, y = 2 # Whence, x gets “[1, 2]”!
Arrays are comma separated values; don’t need [and]

x = 1; y = 2 # This is sequential assignment.

If LHS as has many pieces as RHS, then we have simultenous assignment.
x , y = y , x # E.g., this is swap

Destructuring with “splat” ‘*’
a , b, *more = [1, 2, 3, 4, 5] # ⇒ a ≈ 1; b ≈ 2; c ≈ [3, 4, 5]
first, *middle, last = [1, 2, 3, 4, 5] # ⇒ first ≈ 1; middle ≈ [2, 3, 4]; last = 5
last

Without splat, you only get the head element!
a , b, c = [1, 2, 3, 4, 5] # ⇒ a ≈ 1; b ≈ 2; c ≈ 3

“Assign if undefined”: x ||= e yields x if it’s a defined name, and is x = e otherwise.
This is useful for having local variables, as in loops or terse function bodies.

nope rescue "“nope” is not defined."
nope ||= 1 # ⇒ nope = 1
nope ||= 2 # ⇒ 1, since “nope” is defined

Notice: B rescue R ≈ Perform code B, if it crashes perform code R.

2

https://gist.github.com/Integralist/a29212a8eb10bc8154b7#file-04-dynamic-proxies-rb
https://dev.to/baweaver/decorating-ruby-part-1-symbol-method-decoration-4po2
https://relishapp.com/rspec/rspec-mocks/docs
https://alhassy.github.io/TypedLisp/#typing-via-macros
http://www.randomhacks.net/2005/12/03/why-ruby-is-an-acceptable-lisp/
https://en.wikibooks.org/wiki/Ruby_Programming/Syntax/Method_Calls

Strings and %-Notation

Single quotes are for string literals, whereas double quotes are for string evaluation,
‘interpolation’. Strings may span multiple lines.

you = 12
⇒ 12

"Me and \n #{you}"
⇒ Me and 〈〈newline here〉〉 12

’Me and \n #{you}’
⇒ Me and \n #{you}

“to string” and catenation
"hello " + 23.to_s # ⇒ hello 23

String powers
"hello " * 3
⇒ hello hello hello

Print with a newline
puts "Bye #{you}"
⇒ Bye 12 ⇒ nil

printf-style interpolation
"%s or %s" % ["this" , "that"]
it = %w(this that); "%s or %s" % it

Strings are essentially arrays of characters, and so array operations work as expected!

There is a Perl-inspired way to quote strings, by using % along with any non-alpha-
numeric character acting as the quotation delimiter. Now only the new delimiter needs
to be escaped; e.g., " doesn’t need escape.

A type modifier can appear after the % : q for strings, r for regexp, i symbol array, w
string array, x for shell command, and s symbol. Besides x, s, the rest can be capitalised
to allow interpolation.

%{ woah "there" #{1 + 2} } # ⇒ "woah \"there\" 3"
%w[woah "there" #{1 + 2}] # ⇒ ["woah", "\"there\"", "\#{1", "+", "2}"]
%W[woah "there" #{1 + 2}] # ⇒ ["woah", "\"there\"", "3"]
%i(woah "there") # ⇒ [:woah, :"there"]

See here for more on the %-notation.

Booleans

false, nil are both considered false; all else is considered true.

� Expected relations: ==, !=, !, &&, ||, <, >, <=, >=

� x <=> y returns 1 if x is larger, 0 if equal, and -1 otherwise.

� “Safe navigation operator”: x&.y ≈ (x && x.y).

� and, or are the usual logical operators but with lower precedence.

� They’re used for control flow; e.g., s0 and s1 and · · · and sn does each of the si
until one of them is false.

Since Ruby is a Lisp, it comes with many equality operations; including =~ for regexps.

Arrays

Arrays are heterogeneous, 0-indexed, and [brackets] are optional.

array = [1, "two", :three, [:a, "b", 12]]
again = 1, "two", :three, [:a, "b", 12]

Indexing: x[±i] ≈ “value if i < x.length else nil” x[i] ⇒ The i-th element from the
start; x[-i] ⇒ i-th element from the end.

array[1] # ⇒ "two"
array[-1][0] # ⇒ :a

Segments and ranges:

x[m, k] ≈ [xm, xm+1, ..., xm+k−1]
x[m..n] ≈ [xm, xm+1, ..., xn] if m ≤ n and [] otherwise
x[m...n] ≈ x[m..n-1] —to exclude last value
a[i..j] = r ⇒ a ≈ a[0, i] + *r + a[j, a.length]
Syntactic sugar: x[i] ≈ x.[] i

Where *r is array coercion: Besides splicing, splat is also used to coerce values into
arrays; some objects, such as numbers, don’t have a to_a method, so this makes up for
it.

a = *1 # ⇒ [1]
a = *nil # ⇒ []
a = *"Hi" # ⇒ ["Hi"]
a = *(1..3) # ⇒ [1, 2, 3]
a = *[1,2] # ⇒ [1, 2]

Non-symmetric multiplication; x * y ≈ x.*(y)
[1,2,3] * 2 # ⇒ [1,2,3,1,2,3]
[1,2,3] * "; " # ⇒ "1; 2; 3"

As always, learn more with array.methods to see, for example, first, last, reverse,
push and « are both “snoc”, include? “3”, map. Functions first and last take
an optional numeric argument n to obtain the first n or the last n elements of a list.

Methods yield new arrays; updates are performed by methods ending in “!”.

x = [1, 2, 3] # A new array
x.reverse # A new array; x is unchanged
x.reverse! # x has changed!

Traverse an array using “each” and “each_with_index”.
x.each do |e| puts e.to_s end

Catenation +, union |, difference -, intersection &.
Here is a cheatsheet of array operations in Ruby.

What Haskell calls foldl, Ruby calls inject;
e.g., xs.inject(0) do |sofar, x| sofar + x end yields the sum of xs.

3

https://www.google.com/search?q=interpolation&oq=interpolation&aqs=chrome..69i57j0l5.724j0j7&sourceid=chrome&ie=UTF-8
https://en.wikibooks.org/wiki/Ruby_Programming/Syntax/Literals#The_%_Notation
http://www.randomhacks.net/2005/12/03/why-ruby-is-an-acceptable-lisp/
http://rubylearning.com/blog/2010/11/17/does-ruby-have-too-many-equality-tests/
https://itnext.io/a-ruby-cheatsheet-for-arrays-c8e5275155b5

Symbols

Symbols are immutable constants which act as first-class variables.
� Symbols evaluate to themselves, like literals 12 and "this".

:hello.class # ⇒ Symbol
:nice = 2 # ⇒ ERROR!

Conversion from strings
"nice".to_sym == :nice # ⇒ true

Strings occupy different locations in memory even though they are observationally indis-
tinguishable. In contrast, all occurrences of a symbol refer to the same memory location.

:nice.object_id == :nice.object_id # ⇒ true
"this".object_id == "this".object_id # ⇒ false

Control Flow

We may omit then by using ; or a newline, and may contract else if into elsif.

Let C ∈ {if, unless}
C :test1 then :this else :that end
this C test ≈ C test then this else nil end

(1..5).each do |e| puts e.to_s end
≈ 1 .upto 5 do |e| puts e end
≈ 5 .downto 1 do |e| puts 6 - e end
≈ for e in 1..5 do puts e.to_s end
≈ e = 1; while e <= 5 do puts e.to_s; e += 1 end
≈ e = 1; begin puts e.to_s; e += 1 end until e > 5
≈ e = 1; loop do puts e.to_s; e += 1; break if e > 5 end

Just as break exits a loop, next continues to the next iteration, and redo restarts at the
beginning of an iteration.

There’s also times for repeating a block a number of times, and step for traversing over
every n-th element of a collection.

n.times S ≈ (1..n).each S
c.step(n) S ≈ c.each_with_index {|val, indx| S.call(val) if indx % n == 0}

See here for a host of loop examples.

Hashes

Also known as finite functions, or ‘dictionaries’ of key-value pairs —a dictionary matches
words with their definitions.

Collections are buckets for objects; hashes are labelled buckets: The label is the key and
the value is the object. Thus, hashes are like objects of classes, where the keys are slots
that are tied to values.

hash = { "jasim" => :farm, :qasim => "hockey", 12 => true}

hash.keys # ⇒ ["jasim", :qasim, 12]
hash["jasim"] # ⇒ :farm
hash[12] # ⇒ true
hash[:nope] # ⇒ nil

Simpler syntax when all keys are symbols.

oh = {this: 12, that: "nope", and: :yup}
oh.keys #⇒ [:this, :that, :and]
oh[:and] # ⇒ :yup

Traverse an array using “each” and “each_with_index”.
oh.each do |k, v| puts k.to_s end

As always, learn more with Hash.methods to get keys, values, key?, value?, each,
map, count, ... and even the “safe navigation operator” dig: h.dig(:x, :y, :z) ≈
h[:x] && h[:x][:y] && h[:x][:y][:z].

We may pass in any number of keyword arguments using **.

def woah (**z) z[:name] end

woah name: "Jasim" , work: "Farm" #⇒ Jasim

Hashes can be used to model (rose) trees:

family = {grandpa: {dad: {child1: nil, child2: nil},
uncle: {child3: nil, child4: nil},
scar: nil}}

Depths of deepest node.
def height t

if not t
then 0
else t.map{|k, v| height v}.map{|e| e + 1}.max
end end

height family # ⇒ 3

Classes

Classes are labelled product types: They denote values of tuples with named components.
Classes are to objects as cookie cutters (templates) are to cookies.

Modifiers: public, private, protected
� Everything is public by default.
� One a modifier is declared, by itself on its own line, it remains in effect until

another modifier is declared.
� Public ⇒ Inherited by children and can be used without any constraints.
� Protected ⇒ Inherited by children, and may be occur freely anywhere in the

class definition; such as being called on other instances of the same class.
� Private ⇒ Can only occur stand-alone in the class definition.

These are forms of advice.

Class is also an object in Ruby.

class C 〈〈contents〉〉 end
≈
C = Class.new do 〈〈contents〉〉 end

4

https://www.thegeekstuff.com/2018/05/ruby-loop-examples/

Instance attributes are variables such that each object has a different copy; their names
must start with @ —“at” for “at”tribute.

Class attributes are variables that are mutually shared by all objects; their names must
start with @@ —“at all” ≈ attribute for all.

self refers to the entity being defined as a whole; name refers to the entities string name.

class Person

@@world = 0 # How many persons are there?
Instance values: These give us a reader “x.field” to see a field
and a writer “x.field = ...” to assign to it.
attr_accessor :name
attr_accessor :work

Optional; Constructor method via the special “initialize” method
def initialize (name, work) @name = name; @work = work; @@world += 1 end

See the static value, world
def world

@@world
end

Class methods use “self”;
they can only be called by the class, not by instances.
def self.flood

puts "A great flood has killed all of humanity"; @@world = 0 end

end

jasim = Person.new("Qasim", "Farmer")
qasim = Person.new("", "")
jasim.name = "Jasim"

puts "#{jasim.name} is a #{jasim.work}"
puts "There are #{qasim.world} people here!"
Person.flood
puts "There are #{qasim.world} people here!"
� See here to learn more about the new method.

Using define_method along with instance_variable_set("@#namehere", value) and
instance_variable_get("@#namehere"), we can elegantly form a number of related
methods from a list of names; e.g., recall attr_accessor. Whence design patterns
become library methods!

In Ruby, just as methods can be overriden and advised, classes are open: They can be
extended anytime. This is akin to C# extension methods or Haskell’s typeclasses.

Open up existing class and add a method.
class Fixnum
def my_times; self.downto 1 do yield end end

end

3.my_times do puts "neato" end # ⇒ Prints “neato” thrice

� We can freely add and alter class continents long after a class is defined.
� We may even alter core classes.
� Useful to extend classes with new functionality.

Modules & Mixins

Single parent inheritance: class Child < Parent · · · end, for propagating behaviour
to similar objects.

A module is a collection of functions and constants, whose contents may become part of
any class. Implicitly, the module will depend on a number of class methods —c.f., Java
interfaces— which are used to implement the module’s contents. This way, we can mix
in additional capabilities into objects regardless of similarity.

Modules:
� Inclusion binds module contents to the class instances.
� Extension binds module contents to the class itself.

Implicitly depends on a function “did”
module M; def go; "I #{did}!" end end

Each class here defines a method “did”; Action makes it static.
Both include the module; the first dynamically, the second statically.
class Verb; include M; def did; "jumped" end end
class Action; extend M; def self.did; "sat" end end

puts "#{Verb.new.go} versus #{Action.go}"
⇒ I jumped! versus I sat!

For example, a class wanting to be an Enumerable must implement each and a class
wanting to be Comparable must implement the ‘spaceship’ operator <=>. In turn, we
may then use sort, any?, max, member?, ...; run Enumerable.instance_methods to
list many useful methods.

Modules are also values and can be defined anywhere:

mymod = Module.new do def talk; "Hi" end end

Reads

. � Ruby Monk — Interactive, in browser, tutorials
� Ruby Meta-tutorial — ruby-lang.org
� The Odin Project
� Learn Ruby in ~30 minutes — https://learnxinyminutes.com/
� contracts.ruby — Making assertions about your code
� Algebraic Data Types for Ruby
� Community-driven Ruby Coding Style Guide
� Programming Ruby: The Pragmatic Programmer’s Guide
� Learn Ruby in One Video – Derek Banas’ Languages Series
� Learn Ruby Using Zen Koans
� Metaprogramming in Ruby —also some useful snippets
� Seven Languages in Seven Weeks

5

https://blog.appsignal.com/2018/08/07/ruby-magic-changing-the-way-ruby-creates-objects.html
https://rubymonk.com/
https://www.ruby-lang.org/en/documentation/
https://www.theodinproject.com/courses/ruby-programming
https://learnxinyminutes.com/docs/ruby/
https://learnxinyminutes.com/
http://egonschiele.github.io/contracts.ruby/
https://github.com/txus/adts
https://github.com/rubocop-hq/ruby-style-guide
http://ruby-doc.com/docs/ProgrammingRuby/
https://www.youtube.com/watch?v=Dji9ALCgfpM
http://rubykoans.com/
https://thecodeboss.dev/2015/09/metaprogramming-in-ruby-part-2/
https://gist.github.com/Integralist/a29212a8eb10bc8154b7#file-0-ruby-meta-programming-spells-covered-md
http://shop.oreilly.com/product/9781934356593.do

