
Musa Al-hassy https://github.com/alhassy/HaskellCheatSheet April 4, 2020

Haskell CheatSheet

Hello, Home!

main = do putStr "What’s your name? "
name <- getLine
putStrLn ("It’s 2020, " ++ name ++ "! Stay home, stay safe!")

Pattern Matching

Functions can be defined using the usual if_then_else_ construct, or as expressions
guarded by Boolean expressions as in mathematics, or by pattern matching —a form of
‘syntactic comparision’.

fact n = if n == 0 then 1 else n * fact (n - 1)

fact’ n | n == 0 = 1
| n != 0 = n * fact’ (n - 1)

fact’’ 0 = 1
fact’’ n = n * fact’’ (n - 1)

The above definitions of the factorial function are all equal.

Guards, as in the second version, are a form of ‘multi-branching conditional’.

In the final version, when a call, say, fact 5 happens we compare syntactically whether
5 and the first pattern 0 are the same. They are not, so we consider the second case with
the understanding that an identifier appearing in a pattern matches any argument, so
the second clause is used.

Hence, when pattern matching is used, order of equations matters: If we declared the
n-pattern first, then the call fact 0 would match it and we end up with 0 * fact (-1),
which is not what we want!

If we simply defined the final fact using only the first clause, then fact 1 would crash
with the error Non-exhaustive patterns in function fact. That is, we may define partial
functions by not considering all possible shapes of inputs.

See also “view patterns”.

Local Bindings

An equation can be qualified by a where or let clause for defining values or functions
used only within an expression.

...e...e...e where e = expr
≈ let e = expr in ...expr...expr...expr

It sometimes happens in functional programs that one clause of a function needs part of
an argument, while another operators on the whole argument. It it tedious (and inef-
ficient) to write out the structure of the complete argument again when referring to it.
Use the “as operator” @ to label all or part of an argument, as in

f label@(x:y:ys) = · · ·

Operators

Infix operators in Haskell must consist entiry of ‘symbols’ such as &, ^, !, ... rather
than alphanumeric characters. Hence, while addition, +, is written infix, integer division
is written prefix with div.

We can always use whatever fixity we like:
� If f is any prefix binary function, then x ‘f‘ y is a valid infix call.
� If ⊕ is any infix binary operator, then (⊕) x y is a valid prefix call.

It is common to fix one argument ahead of time, e.g., λ x → x + 1 is the successor
operation and is written more tersely as (+1). More generally, (⊕r) = λ x → x ⊕ r.

The usual arithmeic operations are +, /, *, - but % is used to make fractions.

The Boolean operations are ==, /=, &&, || for equality, discrepancy, conjunction, and
disjunction.

Types

Type are inferred, but it is better to write them explicitly so that you communicate
your intentions to the machine. If you think that expression e has type τ then write e ::
τ to communicate that to the machine, which will silently accept your claim or reject it
loudly.

Type Name Example Value
Small integers Int 42
Unlimited integers Integer 7376541234
Reals Float 3.14 and 2 % 5
Booleans Boolean True and False
Characters Char ’a’ and ’3’
Strings String "salam"
Lists [α] [] or [x1, ..., xn]
Tuples (α, β, γ) (x1, x2, x3)
Functions α → β λ x → · · ·

Polymorphism is the concept that allows one function to operate on different types.
� A function whose type contains variables is called a polymorphic function.
� The simplest polymorphic function is id : : a -> a, defined by id x = x.

Tuples

Tuples (α1, ..., αn) are types with values written (x1, ..., xn)
where each xi :: αi. The are a form of ‘record’ or ‘product’ type.

E.g., (True, 3, ’a’) :: (Boolean, Int, Char).

1

https://alhassy.github.io/
https://github.com/alhassy/HaskellCheatSheet
https://gitlab.haskell.org/ghc/ghc/-/wikis/view-patterns

Tuples are used to “return multiple values” from a function.

Two useful functions on tuples of length 2 are:

fst :: (α, β) → α
fst (x, y) = x

snd :: (α, β) → β
snd (x, y) = β

If in addition you import Control.Arrow then you may use:

first :: (α → τ) → (α, β) → (τ, β)
first f (x, y) = (f x, y)

second :: (β → τ) → (α, β) → (α, τ)
second g (x, y) = (x, g y)

(***) :: (α → α’) → (β → β) → (α, β) → (α’, β’)
(f *** g) (x, y) = (f x, g y)

(&&&) :: (τ → α) → (τ → β) → τ → (α, β)
(f &&& g) x = (f x, g x)

Lists

Lists are sequences of items of the same type.
If each xi : : α then [x1, ..., xn] : : [α].

Lists are useful for functions that want to ‘non-deterministicly’ return a value:
They return a list of all possible values.
� The empty list is []
� We “cons”truct nonempty lists using (:) : : α → [α] → [α]
� Abbreviation: [x1, ..., xn] = x1 : (x2 : (· · · (xn : [])))
� List comprehensions: [f x | x <- xs, p x] is the list of elements f x where x

is an element from list xs and x satisfies the property p
◦ E.g., [2 * x | x <- [2, 3, 4], x < 4] ≈ [2 * 2, 2 * 3] ≈ [4, 6]

� Shorthand notation for segments: u may be ommitted to yield infinite lists
◦ [l .. u] = [l, l + 1, l + 2, ..., u].
◦ [a, b, .., u] = [a + i * step | i <- [0 .. u - a]] where step

= b - a

Strings are just lists of characters: "c0c1...cn" ≈ [’c0’, ..., ’cn’].
� Hence, all list methods work for strings.

Pattern matching on lists

prod [] = 1
prod (x:xs) = x * prod xs

fact n = prod [1 .. n]

If your function needs a case with a list of say, length 3, then you can match directly
on that shape via [x, y, z] —which is just an abbreviation for the shape x:y:z:[].

Likewise, if we want to consider lists of length at least 3 then we match on the shape
x:y:z:zs. E.g., define the function that produces the maximum of a non-empty list, or
the function that removes adjacent duplicates —both require the use of guards.

[x0, ..., xn] !! i = xi
[x0, ..., xn] ++ [y0, ..., ym] = [x0, ..., xn, y0, ..., ym]
concat [xs0, ..., xsn] = xs0 ++ · · · ++ xsn

{- Partial functions -}
head [x0, ..., xn] = x0
tail [x0, ..., xn] = [x1, ..., xn]
init [x0, ..., xn] = [x0, ..., xn−1]
last [x0, ..., xn] = xn

take k [x0, ..., xn] = [x0, ..., xk−1]
drop k [x0, ..., xn] = [xk, ..., xn]

sum [x0, ..., xn] = x0 + · · · + xn
prod [x0, ..., xn] = x0 * · · · * xn
reverse [x0, ..., xn] = [xn, ..., x0]
elem x [x0, ..., xn] = x == x0 || · · · || x == xn

zip [x0, ..., xn] [y0, ..., ym] = [(x0, y0), ..., (xk, yk)] where k = n ‘min‘ m
unzip [(x0, y0), ..., (xk, yk)] = ([x0, ..., xk], [y0, ..., yk])

Duality: Let ∂f = reverse . f . reverse, then init = ∂ tail and
take k = ∂ (drop k); even pure . head = ∂ (pure . last) where pure x = [x].

List ‘Design Patterns’

Many functions have the same ‘form’ or ‘design pattern’, a fact which is taken advan-
tage of by defining higher-order functions to factor out the structural similarity of the
individual functions.

map f xs = [f x | x <- xs]
� Transform all elements of a list according to the function f.

filter p xs = [x | x <- xs, p x]
� Keep only the elements of the list that satisfy the predicate p.
� takeWhile p xs ≈ Take elements of xs that satisfy p, but stop stop at the first

element that does not satisfy p.
� dropWhile p xs ≈ Drop all elements until you see one that does not satisfy the

predicate.
� xs = takeWhile p xs ++ dropWhile p xs.

Right-folds let us ‘sum’ up the elements of the list, associating to the right.

foldr (⊕) e ≈ λ (x0 : (x1 : (... : (xn : []))))
→ (x0 ⊕ (x1 ⊕ (... ⊕ (xn ⊕ e))))

This function just replaces cons “:” and [] with ⊕ and e. That’s all.
� E.g., replacing :,[] with themselves does nothing: foldr (:) [] = id.

2

https://en.wikipedia.org/wiki/Conjugacy_class

All functions on lists can be written as folds!

h [] = e ∧ h (x:xs) = x ⊕ h xs
≡ h = foldr (λ x rec_call → x ⊕ rec_call) e
� Look at the two cases of a function and move them to the two first arguments of

the fold.
◦ map f = foldr (λ x ys → f x : ys) []
◦ filter p = foldr (λ x ys → if (p x) then (x:ys) else ys) []
◦ takeWhile p = foldr (λ x ys → if (p x) then (x:ys) else []) []

You can also fold leftward, i.e., by associating to the left:

foldl (⊕) e ≈ λ (x0 : (x1 : (... : (xn : []))))
→ (((e ⊕ x0) ⊕ x1) ⊕ ...) ⊕ xn

Unless the operation ⊕ is associative, the folds are generally different.
� E.g., foldl (/) 1 [1..n] ≈ 1 / n! where n ! = product [1..n].
� E.g., -55 = foldl (-) 0 [1..10] 6= foldr (-) 0 [1..10] = -5.

If h swaps arguments —h(x ⊕ y) = h y ⊕ h x— then h swaps folds:
h . foldr (⊕) e = foldl () e’ where e’ = h e and x 	 y = x ⊕ h y.

E.g., foldl (-) 0 xs = - (foldr (+) 0 xs) = - (sum xs)
and n ! = foldr (*) 1 [1..n] = 1 / foldl (/) 1 [1..n].

(Floating points are a leaky abstraction!)

Algebraic data types

When we have ‘possible scenarios’, we can make a type to consider each option. E.g.,
data Door = Open | Closed makes a new datatype with two different values. Under the
hood, Door could be implemented as integers and Open is 0 and Closed is 1; or any other
implementation —all that matters is that we have a new type, Door, with two different
values, Open and Closed.

Usually, our scenarios contain a ‘payload’ of additional information; e.g., data Door2 =
Open | Ajar Int | Closed. Here, we have a new way to construct Door values, such
as Ajar 10 and Ajar 30, that we could interpret as denoting how far the door is open/.
Under the hood, Door2 could be implemented as pairs of integers, with Open being (0,0),
Ajar n being (1, n), and Closed being (2, 0) —i.e., as the pairs “(value position, pay-
load data)”. Unlike functions, a value construction such as Ajar 10 cannot be simplified
any further; just as the list value 1:2:3:[] cannot be simplified any further. Remember,
the representation under the hood does not matter, what matters is that we have three
possible construction forms of Door2 values.

Languages, such as C, which do not support such an “algebraic” approach, force you, the
user, to actually choose a particular representation —even though, it does not matter,
since we only want a way to speak of “different cases, with additional information”.

In general, we declare the following to get an “enumerated type with payloads”.

data D = C0 τ1 τ2 ... τm | C1 · · · | Cn · · · deriving Show

There are n constructors Ci that make different values of type D; e.g., C0 x1 x2 ... xm
is a D-value whenever each xi is a τ i-value. The “deriving Show” at the end of the

definition is necessary for user-defined types to make sure that values of these types can
be printed in a standard form.

We may now define functions on D by pattern matching on the possible ways to construct
values for it; i.e., by considering the cases Ci.

In-fact, we could have written data D α1 α2 ... αk = · · · , so that we speak of “D
values parameterised by types αi”. E.g., “lists whose elements are of type α” is defined
by data List α = Nil | Cons α (List α) and, for example, Cons 1 (Cons 2 Nil) is
a value of List Int, whereas Cons ’a’ Nil is of type List Char. —The List type is
missing the “deriving Show”, see below for how to mixin such a feature.

For example, suppose we want to distinguish whether we have an α-value or a β-value,
we use Either. Let’s then define an example infix function using pattern matching.

data Either α β = Left α | Right β

(+++) :: (α → α’) → (β → β’) → Either α β → Either α’ β’
(f +++ g) (Left x) = Left $ f x
(f +++ g) (Right x) = Right $ g x

right :: (β → τ) → Either α β → Either α τ
right f = id +++ f

The above (+++) can be found in Control.Arrow and is also known as either in the
standard library.

Typeclasses and overloading

Overloading is using the same name to designate operations “of the same nature” on
values of different types.

E.g., the show function converts its argument into a string; however, it is not polymor-
phic: We cannot define show :: α → String with one definition since some items, like
functions or infinite datatypes, cannot be printed and so this is not a valid type for the
function show.

Haskell solves this by having Show typeclass whose instance types α each implement a def-
inition of the class method show. The type of show is written Show α => α -> String:
Given an argument of type α, look in the global listing of Show instances, find the one for
α, and use that; if α has no Show instance, then we have a type error. One says “the type
variable α has is restricted to be a Show instance” —as indicated on the left side of the
“=>” symbol.

E.g., for the List datatype we defined, we may declare it to be ‘showable’ like so:
1 instance Show a => Show (List a) where
2 show Nil = "Nope, nothing here"
3 show (Cons x xs) = "Saw " ++ show x ++ ", then " ++ show xs

That is:
1. If a is showable, then List a is also showable.
2. Here’s how to show Nil directly.
3. We show Cons x xs by using the show of a on x, then recursively showing xs.

3

Common Typeclasses
Show Show elements as strings, show
Read How to read element values from strings, read
Eq Compare elements for equality, ==
Num Use literals 0, 20, ..., and arithmetic +, *, -
Ord Use comparison relations >, <, >=, <=
Enum Types that can be listed, [start .. end]
Monoid Types that model ‘(untyped) composition’
Functor Type formers that model effectful computation
Applicative Type formers that can sequence effects
Monad Type formers that let effects depend on each other

The Ord typeclass is declared class Eq a => Ord a where · · · , so that all ordered types
are necessarily also types with equality. One says Ord is a subclass of Eq; and since sub-
classes inherit all functions of a class, we may always replace (Eq a, Ord a) => · · · by
Ord a => · · · .

You can of-course define your own typeclasses; e.g., the Monoid class in Haskell could be
defined as follows.

class Semigroup a where
(<>) :: a -> a -> a {- A way to “compose” elements together -}
{- Axiom: (x <> y) <> z = x <> (y <> z) -}

class Semigroup a => Monoid a where
mempty :: a {- Axiom: This is a ‘no-op’, identity, for composition <> -}

Example monoids (α, <>, mempty) include (Int, +, 0), ([α], ++, []), and
(Program statements, sequence “;”, the empty statement) —this last example is approx-
imated as Term with ‘let-in’ clauses at the end of this cheatsheet. Typeclasses are inter-
faces, possibly with axioms specifying their behaviour.

As shown earlier, Haskell provides a the deriving mechanism for making it easier to
define instances of typeclasses, such as Show, Read, Eq, Ord, Enum. How? Constructor
names are printed and read as written as written in the data declaration, two values are
equal if they are formed by the same construction, one value is less than another if the
constructor of the first is declared in the data definition before the constructor of the
second, and similarly for listing elements out.

Functor

Functors are type formers that “behave” like collections: We can alter their “ele-
ments” without messing with the ‘collection structure’ or ‘element positions’. The well-
behavedness constraints are called the functor axioms.

class Functor f where
fmap :: (α → β) → f α → f β

(<$>) = fmap {- An infix alias -}

The axioms cannot be checked by Haskell, so we can form instances that fail to meet the
implicit specifications —two examples are below.

Identity Law: fmap id = id

Doing no alteration to the contents of a collection does nothing to the collection.

This ensures that “alterations don’t needlessly mess with element values” e.g., the follow-
ing is not a functor since it does.

{- I probably have an item -}
data Probably a = Chance a Int

instance Functor Probably where
fmap f (Chance x n) = Chance (f x) (n ‘div‘ 2)

Fusion Law: fmap f . fmap g = fmap (f . g)

Reaching into a collection and altering twice is the same as reaching in and altering once.

This ensures that “alterations don’t needlessly mess with collection structure”; e.g., the
following is not a functor since it does.

import Prelude hiding (Left, Right)

{- I have an item in my left or my right pocket -}
data Pocket a = Left a | Right a

instance Functor Pocket where
fmap f (Left x) = Right (f x)
fmap f (Right x) = Left (f x)

It is important to note that functors model well-behaved container-like types, but of-
course the types do not actually need to contain anything at all! E.g., the following is a
valid functor.

{- “I totally have an α-value, it’s either here or there.” Lies! -}
data Liar α = OverHere Int | OverThere Int

instance Functor Liar where
fmap f (OverHere n) = OverHere n
fmap f (OverThere n) = OverThere n

Notice that if we altered n, say by dividing it by two, then we break the identity law; and
if we swap the constructors, then we break the fusion law. Super neat stuff!

In general, functors take something boring and generally furnish it with ‘coherent’ struc-
ture, but there is not necessarily an α ‘inside’ f α. E.g., f α = (ε → α) has as
values “recipes for forming an α-value”, but unless executed, there is no α-value.

� fmap f xs ≈ for each element x in the ‘collection’ xs, yield f x.
� Haskell can usually derive functor instances since they are unique: Only one

possible definition of fmap will work.
� Reading the functor axioms left-to-right, they can be seen as optimisation laws

that make a program faster by reducing work.
� The two laws together say fmap distributes over composition:

fmap (f1 . f2 . · · · . fn) = fmap f1 . · · · . fmap fn for n ≥ 0.

Naturality Theorems: If p : : f a → g a for some functors f and g,
then fmap f . p = p . fmap f for any function f.

Hence, any generic property p : : f α → ε is invariant over fmaps:
p(fmap f xs) = p xs. E.g., the length of a list does not change even when an fmap is
applied.

4

http://archive.fo/U8xIY

Functor Examples

Let f1, f2 be functors and ε be a given type.

Type Former f α f <$> x
Identity α f <$> x = f x
Constant ε f <$> x = x
List [α] f <$> [x0, ..., xn] = [f x0, ..., f xn]
Either Either ε α f <$> x = right f
Product (f1 α, f2 α) f <$> (x, y) = (f <$> x, f <$> y)
Composition f1 (f2 α) f <$> x = (fmap f) <$> x
Sum Either (f1 α) (f2 α) f <$> ea = f +++ f
Writer (ε, α) f <$> (e, x) = (e, f x)
Reader ε → α f <$> g = f . g
State ε → (ε, α) f <$> g = second f . g

Notice that writer is the product of the constant and the identity functors.

Unlike reader, the type former f α = α → ε is not a functor since there is no way to
implement fmap. In contrast, f α = (α → ε, α) does have an implementation of fmap,
but it is not lawful.

Applicative

Applicatives are collection-like types that can apply collections of functions to collections
of elements.

In particular, applicatives can fmap over multiple arguments; e.g., if we try to add Just 2
and Just 3, we find (+) <$> Just 2 :: Maybe (Int → Int) and this is not a function
and so cannot be applied further to Just 3 to get Just 5. We have both the function
and the value wrapped up, so we need a way to apply the former to the latter. The
answer is (+) <$> Just 2 <*> Just 3.

class Functor f => Applicative f where
pure :: a -> f a
(<*>) :: f (a -> b) -> f a -> f b {- “apply” -}

{- Apply associates to the left: p <*> q <*> r = (p <*> q) <*> r) -}

The method pure lets us inject values, to make ‘singleton collections’.
� Functors transform values inside collections; applicatives can additionally combine

values inside collections.
� Exercise: If α is a monoid, then so too is f α for any applicative f.

The applicative axioms ensure that apply behaves like usual functional application:
� Identity: pure id <*> x = x —c.f., id x = x
� Homomorphism: pure f <*> pure x = pure (f x) —it really is function appli-

cation on pure values!
◦ Applying a non-effectful function to a non-effectful argument in an effectful

context is the same as just applying the function to the argument and then
injecting the result into the content.

� Interchange: p <*> pure x = pure ($ x) <*> p —c.f., f x = ($ x) f
◦ Functions f take x as input ≈ Values x project functions f to particular

values

◦ When there is only one effectful component, then it does not matter whether
we evaluate the function first or the argument first, there will still only be
one effect.

◦ Indeed, this is equivalent to the law: pure f <*> q = pure (flip ($))
<*> q <*> pure f.

� Composition: pure (.) <*> p <*> q <*> r = p <*> (q <*> r)
—c.f., (f . g) . h = f . (g . h).

If we view f α as an “effectful computation on α”, then the above laws ensure pure cre-
ates an “effect free” context. E.g., if f α = [α] is considered “nondeterminstic α-values”,
then pure just treats usual α-values as nondeterminstic but with no ambiguity, and fs
<*> xs reads “if we nondeterminsticly have a choice f from fs, and we nondetermin-
sticly an x from xs, then we nondeterminsticly obtain f x.” More concretely, if I’m given
randomly addition or multiplication along with the argument 3 and another argument
that could be 2, 4, or 6, then the result would be obtained by considering all possible
combinations: [(+), (*)] <*> pure 3 <*> [2, 4, 6] = [5,7,9,6,12,18]. The name
“<*>” is suggestive of this ‘cartesian product’ nature.

Given a definition of apply, the definition of pure may be obtained by unfolding the
identity axiom.

Using these laws, we regain the original fmap —since fmap’s are unique in Haskell—
thereby further cementing that applicatives model “collections that can be functionally
applied”: f <$> x = pure f <*> x. (Hence, every applicative is a functor whether we
like it or not.)
� The identity applicative law is then just the identity law of functor.
� The homomorphism law now becomes: pure . f = fmap f . pure.

◦ This is the “naturality law” for pure.

The laws may be interpreted as left-to-right rewrite rules and so are a procedure for trans-
forming any applicative expression into the canonical form of “a pure function applied
to effectful arguments”: pure f <*> x1 <*> · · · <*> xn. In this way, one can compute
in-parallel the, necessarily independent, xi then combine them together.

Notice that the canonical form generalises fmap to n-arguments:
Given f : : α1 → · · · → αn → β and xi : : f αi, we obtain an (f β)-value.
The case of n = 2 is called liftA2, n = 1 is just fmap, and for n = 0 we have pure!

Notice that lift2A is essentially the cartesian product in the setting of lists, or (<&>)
below —c.f., sequenceA :: Applicative f ⇒ [f a] → f [a].

(<&>) :: f a → f b → f (a, b) {- Not a standard name! -}
(<&>) = liftA2 (,) -- i.e., p <&> q = (,) <$> p <*> q

This is a pairing operation with properties of (,) mirrored at the applicative level:

{- Pure Pairing -} pure x <&> pure y = pure (x, y)
{- Naturality -} (f &&& g) <$> (u <&> v) = (f <$> u) <&> (g <&> v)

{- Left Projection -} fst <$> (u <&> pure ()) = u
{- Right Projection -} snd <$> (pure () <&> v) = v
{- Associtivity -} assocl <$> (u <&> (v <&> w)) = (u <&> v) <&> w

The final three laws above suffice to prove the original applicative axioms, and so we may
define p <*> q = uncurry ($) <$> (p <&> q).

5

https://hackage.haskell.org/package/base-4.12.0.0/docs/Data-Functor-Identity.html#t:Identity
https://hackage.haskell.org/package/base-4.12.0.0/docs/Control-Applicative.html#t:Const
https://hackage.haskell.org/package/base-4.12.0.0/docs/GHC-List.html
https://hackage.haskell.org/package/base-4.12.0.0/docs/Data-Either.html#t:Either
https://hackage.haskell.org/package/base-4.12.0.0/docs/Data-Functor-Product.html#t:Product
https://hackage.haskell.org/package/base-4.12.0.0/docs/Data-Functor-Compose.html#t:Compose
http://comonad.com/reader/2012/abstracting-with-applicatives/
http://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-Writer-Lazy.html#g:2
https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-Reader.html
https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-State-Lazy.html#g:2
http://archive.fo/U8xIY
http://www.staff.city.ac.uk/~ross/papers/Applicative.pdf

Applicative Examples

Let f1, f2 be functors and let ε a type.

Functor f α f <*> x
Identity α f <*> x = f x
Constant ε e <*> d = e <> d
List [α] fs <*> xs = [f x | f <- fs, x <- xs]
Either Either ε α ef <*> ea = right (λ f → right f ea) ef
Composition f1 (f2 α) f <*> x = (<*>) <$> f <*> x
Product (f1 α, f2 α) (f, g) <*> (x, y) = (f <*> x, g <*> y)
Sum Either (f1 α) (f2 α) Challenge: Assume η : : f1 a → f2 a
Writer (ε, α) (a , f) <*> (b, x) = (a <> b, f x)
Reader ε → α f <*> g = λ e → f e (g e) —c.f., SKI
State ε → (ε, α) sf <*> sa = λ e → let (e’, f) = sf e

in second f (sa e’)

In the writer and constant cases, we need ε to also be a monoid. When ε is not a
monoid, then those two constructions give examples of functors that are not applicatives
—since there is no way to define pure. In contrast, f α = (α → ε) → Maybe ε is not
an applicative since no definition of apply is lawful.

Since readers ((->) r) are applicatives, we may, for example, write (⊕) <$> f <*> g
as a terse alternative to the “pointwise ⊕” method λ x → f x ⊕ g x. E.g., using (&&)
gives a simple way to chain predicates.

Do-Notation —Subtle difference between applicatives and monads

Recall the map operation on lists, we could define it ourselves:

map’ :: (α -> β) -> [α] -> [β]
map’ f [] = []
map’ f (x:xs) = let y = f x

ys = map’ f xs
in (y:ys)

If instead the altering function f returned effectful results, then we could gather the
results along with the effect:

{-# LANGUAGE ApplicativeDo #-}

mapA :: Applicative f => (a -> f b) -> [a] -> f [b]
mapA f [] = pure []
mapA f (x:xs) = do y <- f x

ys <- mapA f xs
pure (y:ys)

{- ≈ (:) <$> f x <*> mapA f xs -}

Applicative syntax can be a bit hard to write, whereas do-notation is more natural and
reminiscent of the imperative style used in defining map’ above. For instance, the intu-
ition that fs <*> ps is a cartesian product is clearer in do-notation: fs <*> ps ≈ do
{f ← fs; x ← ps; pure (f x)} where the right side is read “for-each f in fs, and each
x in ps, compute f x”.

In-general, do {x1 ← p1; ...; xn ← pn; pure e} ≈ pure (λ x1 ... xn → e)
<*> p1 <*> · · · <*> pn provided pi does not mention xj for j < i; but e may re-
fer to all xi. If any pi mentions an earlier xj , then we could not translate the do-notation
into an applicative expression.

If do {x ← p; y ← qx; pure e} has qx being an expression depending on x, then we
could say this is an abbreviation for (λ x → (λ y → e) <$> qx) <$> p but this is of
type f (f β)). Hence, to allow later computations to depend on earlier computations,
we need a method join :: f (f α) → f α with which we define
do {x ← p; y ← qx; pure e} ≈ join $ ~(λ x -> (λ y → e) <$> qx) <$> p.

Applicatives with a join are called monads and they give us a “programmable semi-
colon” . Since later items may depend on earlier ones, do {x ← p; y ← q; pure e}
could be read “let x be the value of computation p, let y be the value of computation q,
then combine the values via expression e”. Depending on how <*> is implemented, such
‘let declarations’ could short-circuit (Maybe) or be nondeterministic (List) or have other
effects such as altering state.

As the do-notation clearly shows, the primary difference between Monad and Applicative
is that Monad allows dependencies on previous results, whereas Applicative does not.

Do-syntax also works with tuples and functions –c.f., reader monad below— since they
are monadic; e.g., every clause x <- f in a functional do-expression denotes the resulting
of applying f to the (implicit) input. More concretely:

go :: (Show a, Num a) => a -> (a, String)
go = do {x <- (1+); y <- show; return (x, y)}

-- go 3 = (4, "3")

Likewise, tuples, lists, etc.

Formal Definition of Do-Notation

For a general applicative f, a do expression has the form do {C; r}, where C is a (pos-
sibly empty) list of commands separated by semicolons, and r is an expression of type
f β, which is also the type of the entire do expression. Each command takes the form
x ← p, where x is a variable, or possibly a pattern; if p :: f α then x :: α. In the
particular case of the anonymous variable, _ ← p may be abbreviated to p.

The translation of a do expression into <*>/join operations and where clauses is governed
by three rules —the last one only applies in the setting of a monad.

(1) do {r} = r
(2A) do {x ← p; C; r} = q <*> p where q x = do {C; r} --Provided x 6∈ C
(2M) do {x ← p; C; r} = join $ map q p where q x = do {C; r}

{- Fact: When x 6∈ C, (2A) = (2M). -}

By definition chasing and induction on the number of commands C, we have:

[CollapseLaw] do {C; do {D; r}} = do {C; D; r}

Likewise:

[Map] fmap f p = do {x ← p; pure (f x)} -- By applicative laws
[Join] join ps = do {p ← ps; p} -- By functor laws

6

https://hackage.haskell.org/package/base-4.12.0.0/docs/Data-Functor-Identity.html#t:Identity
https://hackage.haskell.org/package/base-4.12.0.0/docs/Control-Applicative.html#t:Const
https://hackage.haskell.org/package/base-4.12.0.0/docs/GHC-List.html
https://hackage.haskell.org/package/base-4.12.0.0/docs/Data-Either.html#t:Either
https://hackage.haskell.org/package/base-4.12.0.0/docs/Data-Functor-Compose.html#t:Compose
https://hackage.haskell.org/package/base-4.12.0.0/docs/Data-Functor-Product.html#t:Product
http://comonad.com/reader/2012/abstracting-with-applicatives/
http://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-Writer-Lazy.html#g:2
https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-Reader.html
https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-State-Lazy.html#g:2
https://dl.acm.org/doi/pdf/10.1145/3241625.2976007

Do-Notation Laws: Here are some desirable usability properties of do-notation.

[RightIdentity] do {B; x ← p; pure x} = do {B; p}
[LeftIdentity] do {B; x ← pure e; C; r} = do {B; C[x := e]; r[x := e]}
[Associtivity] do {B; x ← do {C; p}; D; r} = do {B; C; x ← p; D; r}

Here, B, C, D range over sequences of commands and C[x := e] means the sequence C
with all free occruences of x replaced by e.
� Associtivity gives us a nice way to ‘inline’ other calls.
� The LeftIdentity law, read right-to-left, lets us “locally give a name” to the possibly

complex expression e.

If pure forms a singleton collection, then LeftIdentity is a “one-point rule”: We
consider all x ← pure e, but there is only one such x, namely e!

In the applicative case, where the clauses are independent, we can prove, say,
RightIdentity using the identity law for applicatives —which says essentially
do {x <- p; pure x} = p— then apply induction on the length of B.

What axioms are needed for the monad case to prove the do-notation laws?

Monad Laws

Here is the definition of the monad typeclass.

class Applicative m => Monad (m :: * -> *) where
(>>=) :: m a -> (a -> m b) -> m b

(<=<) :: Monad m => (b -> m c) -> (a -> m b) -> a -> m c
f <=< g = join . fmap f . g

Where’s join!? Historically, monads entered Haskell first with interface (»=), return;
later it was realised that return = pure and the relationship with applicative was ce-
mented.

‘Bind’ (»=) is definable from join by ma »= f = join (fmap f ma), and, for this reason,
bind is known as “flat map” or “concat map” in particular instances. For instance, the
second definition of do-notation could be expressed:

(2M’) do {x ← p; C; r} = p >>= q where q x = do {C; r}

Conversely, join ps = do {p ← ps; p} = ps »= id. Likewise, with (2M’), note how
(<*>) can be defined directly in-terms of (»=)
—c.f., mf <*> mx = do {f ← mf; x ← mx; return (f x)}.

Since fmap f p = do {x ← p; return (f x)} = p »= return . f, in the past
monad did not even have functor as a superclass —c.f., liftM.

The properties of »=, return that prove the desired do-notation laws are:

[LeftIdentity] return a >>= f ≡ f a
[RightIdentity] m >>= return ≡ m
[Associtivity] (m >>= f) >>= g ≡ m >>= (\x -> f x >>= g)

i.e., (m >>= (\x -> f x)) >>= g
= m >>= (\x -> f x >>= g)

Equivalently, show the ‘fish’ (<=<) is associative with identity being pure —c.f., monoids!

It is pretty awesome that (»=), return give us a functor, an applicative, and (depen-
dent) do-notation! Why? Because bind does both the work of fmap and join. Thus,
pure, fmap, join suffice to characterise a monad.

Join determines how a monad behaves!

The monad laws can be expressed in terms of join directly:

[Associativity] join . fmap join = join . join
{- The only two ways to get from “m (m (m α))” to “m α” are the same. -}

[Identity Laws] join. fmap pure = join . pure = id
{- Wrapping up “m α” gives an “m (m α)” which flattens to the original element. -}

Then, notice that the (free) naturality of join is:

join . fmap (fmap f) = fmap f . join : : m (m α) → m β

Again, note that join doesn’t merely flatten a monad value, but rather performs the
necessary logic that determines how the monad behaves.

E.g., suppose m α = ε → (ε, α) is the type of α-values that can be configured accord-
ing to a fixed environment type ε, along with the possibly updated configuration —i.e.,
functions ε → (ε, α). Then any a : ε → (ε, ε → (ε, α)) in m (m α) can be consid-
ered an element of m α if we propagate the environment configuration through the outer
layer to obtain a new configuration for the inner layer: λ e → let (e’, a’) = a e in
a’ e’. The join dictates how a configuration is modified then passed along : We have two
actions, a and a’, and join has sequenced them by pushing the environment through the
first thereby modifying it then pushing it through the second.

Monad Examples

Let f1, f2 be functors and let ε a type.
Applicative m α join :: m (m α) → m α
Identity α λ x → x
Constant ε λ x → x —Shucks! Not a monad!
List [α] λ xss → foldr (++) [] xss
Either Either ε α Exercise ˆ_ˆ
Composition f1 (f2 α) Nope! Not a monad!
Product (f1 α, f2 α) λ p → (fst <$> p, snd <$> p)
Writer (ε, α) λ (e, (e’, a)) → (e <> e’, a)
Reader ε → α λ ra → λ e → ra e e
State ε → (ε, α) λ ra → λ e → let (e’, a) = ra e in a e’

In writer, we need ε to be a monoid.
� Notice how, in writer, join merges the outer context with the inner context: Se-

quential writes are mappended together!
� If pure forms ‘singleton containers’ then join flattens containers of containers into

a single container.

Excluding the trivial monoid, the constant functor is not a monad: It fails the monad
identity laws for join. Similarly, f α = Maybe (α, α) is an applicative but not a monad
—since there is no lawful definition of join. Hence, applicatives are strictly more gener-
ally than monads.

7

http://hackage.haskell.org/package/base-4.12.0.0/docs/Control-Monad.html#v:liftM
https://en.wikibooks.org/wiki/Haskell/Category_theory#The_monad_laws_and_their_importance
https://hackage.haskell.org/package/base-4.12.0.0/docs/Data-Functor-Identity.html#t:Identity
https://hackage.haskell.org/package/base-4.12.0.0/docs/Control-Applicative.html#t:Const
https://hackage.haskell.org/package/base-4.12.0.0/docs/GHC-List.html
https://hackage.haskell.org/package/base-4.12.0.0/docs/Data-Either.html#t:Either
https://hackage.haskell.org/package/base-4.12.0.0/docs/Data-Functor-Compose.html#t:Compose
https://stackoverflow.com/q/7040844/3550444
https://hackage.haskell.org/package/base-4.12.0.0/docs/Data-Functor-Product.html#t:Product
http://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-Writer-Lazy.html#g:2
https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-Reader.html
https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-State-Lazy.html#g:2

Running Example —A Simple Arithmetic Language

Let’s start with a weak language:

data Term = Int Int | Div Term Term deriving Show

thirteen = Int 1729 ‘Div‘ (Int 133 ‘Div‘ Int 1)
boom = Int 1729 ‘Div‘ (Int 12 ‘Div‘ Int 0)

eval0 :: Term -> Int
eval0 (Int n) = n
eval0 (n ‘Div‘ d) = let top = eval0 n

bottom = eval0 d
in top ‘div‘ bottom

How do we accomodate safe division by zero? Print to the user what’s happening at each
step of the calcuation? Have terms that access ‘global’ variables? Have terms that can
store named expressions then access them later?

We’ll make such languages and their eval’s will be nearly just as simple as this one (!)
but accomodate these other issues.

Maybe —Possibly Failing Computations

Safe evaluator: No division errors.

eval1 :: Term -> Maybe Int
eval1 (Int n) = pure n
eval1 (n ‘Div‘ d) = do t <- eval1 n

b <- eval1 d
if b == 0 then Nothing else pure (t ‘div‘ b)

Exercise: Rewrite evali without do-notation and you’ll end-up with nested case analysis
leading into a straicase of code that runs right off the page.
� Applicative is enough for eval1, eval2, eval3, but eval4 needs Monad.

Writer —Logging Information as we Compute

Use a pair type W ε α to keep track of an environment ε and a value α.

data Writer ε α = W ε α deriving Show

write :: ε -> Writer ε ()
write e = W e ()

instance Functor (Writer ε) where
fmap f (W e a) = W e (f a)

Aggregate, merge, environments using their monoidal operation.

instance Monoid ε => Applicative (Writer ε) where
pure a = W mempty a
(W e f) <*> (W d a) = W (e <> d) (f a)

instance Monoid ε => Monad (Writer ε) where
(>>=) = \ ma f -> join (pure f <*> ma)
where join (W e (W d a)) = W (e <> d) a

An evaluator that prints to the user what’s going on.

eval2 :: Term -> Writer String Int
eval2 it@(Int n) = W ("\n Evaluating: " ++ show it) n
eval2 it@(n ‘Div‘ d) = do write $ "\n Evaluating: " ++ show it

t <- eval2 n
b <- eval2 d
pure $ (t ‘div‘ b)

-- Try this! With “boom”, we get to see up to the boint of the error ^_^
-- let W e x = eval2 thirteen in putStrLn e

Reader —Accessing ‘Global, read-only, data’

Use a function type ε → α to get α-values that ‘reads’ from a configuration environment
ε.

data Reader ε α = R {run :: ε -> α}

instance Functor (Reader ε) where
fmap f (R g) = R $ f . g

instance Applicative (Reader ε) where
pure a = R $ const a
(R f) <*> (R g) = R $ \e -> f e (g e) {- “S” combinator -}

instance Monad (Reader ε) where
ma >>= f = join (pure f <*> ma)
where join (R rf) = R $ \e -> run (rf e) e

A language with access to global variables; uninitialised variables are 0 by default.

data Term = Int Int | Div Term Term | Var String deriving Show

type GlobalVars = [(String, Int)]

valuefrom :: String -> GlobalVars -> Int
valuefrom x gvs = maybe 0 id $ lookup x gvs

eval3 :: Term -> Reader GlobalVars Int
eval3 (Int x) = pure x
eval3 (Var x) = R $ \e -> x ‘valuefrom‘ e
eval3 (n ‘Div‘ d) = do t <- eval3 n

b <- eval3 d
pure (t ‘div‘ b)

state = [("x", 1729), ("y", 133)] :: GlobalVars
thirteen = Var "x" ‘Div‘ (Var "y" ‘Div‘ Int 1)
-- run (eval3 thirteen) state

8

http://hackage.haskell.org/package/base-4.12.0.0/docs/Data-Maybe.html
https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-Writer-Lazy.html#g:2
https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-Reader.html#g:2

State —Read and write to local storage

Let’s combine writer and reader to get state: We can both read and write to data
by using functions ε → (ε, α) that read from an environment ε and result in a new
environment as well as a value.
� IO α ∼= State TheRealWorld α ;-)

data State ε α = S {run :: ε -> (ε, α)}

push :: Monoid ε => ε -> State ε ()
push d = S $ \e -> (d <> e, ())

instance Functor (State ε) where
fmap f (S g) = S $ \ e -> let (e’, a) = g e in (e’, f a)

instance Applicative (State ε) where
pure a = S $ \e -> (e, a)
(S sf) <*> (S g) = S $ \e -> let (e’, a) = g e

(e’’, f) = sf e’ in (e’’, f a)

instance Monad (State ε) where
ma >>= f = join (pure f <*> ma)

where join (S sf) = S $ \e -> let (e’, S f) = sf e in f e’

A simple language with storage; a program’s value is the value of its final store.

data Expr = Let String Expr Expr | Var String | Int Int | Div Expr Expr
deriving Show

eval4 :: Expr -> State GlobalVars Int
eval4 (Var x) = S $ \e -> let r = x ‘valuefrom‘ e in ((x,r):e, r)
eval4 (Int x) = pure x
eval4 (Let x t body) = do n <- eval4 t

push [(x, n)] -- Applicative is NOT enough here!
eval4 body

eval4 (n ‘Div‘ d) = do t <- eval4 n; b <- eval4 d; pure (t ‘div‘ b)

thirteen = Let "x" (Int 1729)
$ Let "y" (Int 133 ‘Div‘ Int 1)

$ Var "x" ‘Div‘ Var "y"

-- run (eval4 thirteen) []

Exercise: Add to the oringal Term type a constructor Rndm [Term], where Rndm [t1,
..., tn] denotes non-deterministicly choosing one of the terms ti. Then write an eval-
uator that considers all possible branches of a computation: eval5 : Term → [Int].

If we want to mixin any of the features for our evaluators, we need to use ‘monad trans-
formers’ since monads do not compose in general.

Reads

� Introduction to Functional Programming by Richard Bird
◦ Assuming no programming, this book end by showing how to write a theo-

rem prover powerful enough to prove many of laws scattered throughout the
book.

� Monads for functional programming by Philip Wadler
◦ This covers the evali and more ˆ_ˆ

� Comprehending Monads by Philip Wadler
� What I Wish I Knew When Learning Haskell
� Typeclassopedia —The essentials of each type class are introduced, with examples,

commentary, and extensive references for further reading.
� You Could Have Invented Monads! (And Maybe You Already Have.)
� Learn You a Haskell for Great Good —An accessible read with many examples,

and drawings
� The Haskell WikiBook —Has four beginner’s tracks and four advanced tracks
� Category Theory Cheat Sheet —The “theory of typed composition”: Products,

Sums, Functors, Natural Transformations ˆ_ˆ
� Agda Cheat Sheet —Agda is Haskell on steroids in that it you can invoke Haskell

code and write proofs for it.
� LINQ for applicatives and monads.

◦ Monads ≈ SQL/Linq ≈ Comprehensions/Generators

9

https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-State-Lazy.html#g:2
http://homepages.inf.ed.ac.uk/wadler/papers/marktoberdorf/baastad.pdf
https://docs.racket-lang.org/heresy/monad-do.html
http://dev.stephendiehl.com/hask/
https://wiki.haskell.org/Typeclassopedia
http://blog.sigfpe.com/2006/08/you-could-have-invented-monads-and.html
http://learnyouahaskell.com/chapters
https://en.wikibooks.org/wiki/Haskell
https://alhassy.github.io/CatsCheatSheet/CheatSheet.pdf
https://alhassy.github.io/AgdaCheatSheet/CheatSheet.pdf
http://tomasp.net/blog/idioms-in-linq.aspx/#csidiomsl
https://livebook.manning.com/book/real-world-functional-programming/chapter-12/28

