
Musa Al-hassy https://github.com/alhassy/FSharpCheatSheet September 17, 2019

F# Cheat Sheet

Administrivia

F# is a strict, statically, and strongly typed, multi-paradigm, language where types are
inferred. It supports first-order functions and currying.

Roughly,
F# ≈ OCaml + C#

� Single-line comments begin with //.
� Multi-line comments are enclosed in (* · · · *).
� Here’s an example of explicit type annotations.

let x : int = 3
let first (x : ’a) (y: ’b) : ’a = x

� Being “strongly typed” means that F# does little to no coercions, casts, for you.

// 5 / 2.5 (* Crashes: 5 and 2.5 are different types *)
float 5 / 2.5

≈ 5.0 / 2.5
≈ 2.0

F#’s conversion functions are named by the type they convert to; akin to C casts.
◦ E.g., int 23.1 and int "23" both yield the integer 23.
◦ string is then the traditional “to string” method.

Getting Started

The F# REPL and compiler are named fsi/fsc on Windows and fsharpi/fsharpc on
Mac/Linux. (Running these in Emacs Shell stalls; use ansi-term instead!)

Ubuntu sudo apt install mono-complete fsharp
Mac brew install mono

Emacs Setup
(use-package fsharp)
(use-package ob-fsharp)

The [<EntryPoint>] is necessary for using
fsharpc.

Example Source File
module CheatSheet

let myInt = 1972;;

[<EntryPoint>]
let main argv

= printfn "%s" (string myInt)
0

In a terminal, one runs fsharpi CheatSheet.fs to load this script, then open
CheatSheet;; to have unqualified access to all contents; otherwise type in
CheatSheet.myInt;; to access items. One may enter multiple lines in the REPL, then
execute them by entering ;;. Use #quit;; to leave the REPL.

Execute fsharpc CheatSheet.fs; mono CheatSheet.exe to compile the file then run it.

Functions

A function is declared with the let keyword —variables are functions of zero arguments.
Function & varaible names must begin with a lowercase letter, and may use _ or ’.

� Identifiers may have spaces and punctuation in them if they are enclosed in double-
backticks; but no unicode or dashes in-general.

let ‘‘this & that‘‘ = 2

� Functions are like variables, but with arguments, so the same syntax applies.

(* A curried function *)
let f x y = x + y

(* Function application *)
let result = f 10 (2 * 6)

(* Partial application *)
let g x = f x 2

// Composition
let sum9 = f 4 >> f 5

// Threading: x |> f ≈ f x
1 |> f 4 |> fun x -> 2 //// ⇒ 2
Recursive definitions are marked with the
rec keyword.
let rec fact n

= if n = 0
then 1
else n * fact (n - 1)

Here’s an example of a higher-order function & multiple local functions & an infix oper-
ator & an anonymous function & the main method is parametricly polymorphic.

let try_add (bop : ’a -> ’a -> ’a) (test : ’a -> bool)
(fallback : ’a) (x : ’a) (y : ’a)

= (* (/@/) x y = x /@/ y *)
let (/@/) x y = bop x y
let wrap a = if test a then a else fallback
wrap x /@/ wrap y

699 = try_add (+) (fun a -> a % 3 = 0) (666) (-1) 33
(* The anonymous function uses ‘=’ as Boolean equality. *)

-2 = -2 % 3 (* /Remainder/ after dividing out 3s *)

Top level and nested functions are declared in the same way; the final expression in a
definition is the return value.

We also have the η-rule: (fun x -> f x) = f.

F# has extension methods, like C#. That is, types are “open” —as in Ruby.

type System.String with
member this.IsCool = this.StartsWith "J"

// Try it out.
true = "Jasim".IsCool

1

http://www.cas.mcmaster.ca/~alhassm/
https://github.com/alhassy/FSharpCheatSheet
https://github.com/alhassy/OCamlCheatSheet
https://alhassy.github.io/RubyCheatSheet/CheatSheet.pdf

Booleans

Inequality is expressed with <>.

(* false, true, false, true, false, true, true, 1 *)
let x , y = true , false
in x = y, x || y, x && y, x >= y, 12 < 2, "abc" <= "abd"
, 1 <> 2, if x then 1 elif y then 2 else 3

Strings

F# strings are not arrays, or lists, of characters as in C or Haskell.

"string catenation" = "string " ^ "catenation"

Seq.toList "woah" // ⇒ [’w’; ’o’; ’a’; ’h’]

Printf.printf "%d %s" 1972 "taxi";;

let input = System.Console.ReadLine()

Records

Records: Products with named, rather than positional, components.

type Person = {Name: string; Work: string}

(* Construction *)
let jasim = {Name = "Jasim"; Work = "Farm"}

(* Pattern matching for deconstruction *)
let {Name = who; Work = where} = jasim

// ⇒ who = "Jasim" && where = "Farm"
let {Name = woah} = jasim // ⇒ woah = "Jasim"
let go {Name = qx; Work = qy} = qx.Length + 2

(* Or we can use dot notation -- usual projections *)
let go’ p = p.Name ^ p.Work

(* Or using explicit casing *)
let go’’ x =

match x with
| {Name = n} -> n
| _ -> "Uknown"

(* “copy with update” *)
let qasim = {jasim with Name = "Qasim"}

Types are “open”, as in Ruby.

type Person with
member self.rank = self.Name.Length

qasim.rank // ⇒ 5

Variants and Pattern Matching

Sums, or “variants”: A unified way to combine different types into a single type;

� Essentially each case denotes a “state” along with some relevant “data”.

� Constructors must begin with a capital letter.

� We may parameterise using OCaml style, ’a, or/and C# style, <’a>.

type ’a Expr = Undefined | Var of ’a | Const of int | Sum of Expr<’a> * ’a Expr

let that = Const 2 (* A value is one of the listed cases. *)

The tags allow us to extract components of a variant value as well as to case against
values by inspecting their tags. This is pattern matching.

� match· · · with· · · let’s us do case analysis; underscore matches anything.

� Patterns may be guarded using when.

� Abbreviation for functions defined by pattern matching: function cs ≈ fun x
-> match x with cs

let rec eval = function
| Undefined as u -> failwith "Evil" (* Throw exception *)
| Var x -> 0 + match x with "x" -> 999 | _ -> -1
| Const n when n <= 9 -> 9
| Sum (l, r) -> eval l + eval r
| _ -> 0 (* Default case *)

4 = eval that
-1 = (Var "nine" |> eval)
999 = eval (Var "x")
0 = eval (Const 10)

(* Type aliases can also be formed this way *)
type myints = int
let it : myints = 3

Note that we can give a pattern a name; above we mentioned u, but did not use it.

� Repeated & non-exhaustive patterns trigger a warning; e.g., remove the default
case above.

� You can pattern match on numbers, characters, tuples, options, lists, and arrays.

◦ E.g., [| x ; y ; z|] -> y.

Builtins: Options and Choice —these are known as Maybe and Either in Haskell.

type ’a Option = None | Some of ’a
type (’a, ’b) Choice = Choice1Of2 of ’a | Choice2Of2 of ’b

See here for a complete reference on pattern matching.

2

https://alhassy.github.io/RubyCheatSheet/CheatSheet.pdf
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/options
https://msdn.microsoft.com/visualfsharpdocs/conceptual/core.choice%5b%27t1%2c%27t2%5d-union-%5bfsharp%5d
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/pattern-matching

Tuples and Lists

Tuples: Parentheses are optional, comma is the main operator.

let mytuple : int * string * float = (3, "three", 3.0)

(* Pattern matching & projection *)
let (woah0, woah1, woah2) = mytuple
let add_1and4 (w, x, y, z) = w + z
let that = fst ("that", false)

(* A singelton list of one tuple !!!! *)
let zs = [1, "two", true]

(* A List of pairs *)
[’a’,0 ; ’b’,1 ; ’c’, 2]

(* Lists: type ’a list = [] | (::) of ’a * ’a list *)
let xs = [1; 2; 3]
[1; 2; 3] = 1 :: 2 :: 3 :: [] (* Syntactic sugar *)

(* List catenation *)
[1;2;4;6] = [1;2] @ [4;6]
(* Pattern matching example; Only works on lists of length 3 *)
let go [x; y; z] = x + y + z
14 = go [2;5;7]

(* Crashes: Incomplete pattern matching *)
match [1; 2; 3] with
| [] -> 1
| [x; y] -> x
// | (x :: ys) -> x

Here is [0 ; 3 ; 6 ; 9 ; 12] in a number of ways:

[0..3..14] (* Ranges, with a step *)
≈ [for i in 0..14 do if i % 3 = 0 then yield i] (* Guarded comprehensions *)
≈ [for i in 0..4 -> 3 * i] (* Simple comprehensions *)
≈ List.init 5 (fun i -> 3 * i)

(* First 5 items of an “unfold” starting at 0 *)

Expected: concat, map, filter, sort, max, min, etc. fold starts from the left of the list,
foldBack starts from the right. reduce does not need an inital accumulator.

zs |> List.reduce (+) // ⇒ 9
(* Example of a simple “for loop”. *)
[1..10] |> List.iter (printfn "value is %A")

Arrays use [|· · · |] syntax, and are efficient, but otherwise are treated the same as lists;
Pattern matching & standard functions are nearly identical. E.g., [| 1; 2 |] is an array.

Lazy, and infinite, structures are obtained by ‘sequences’.

Options

Option: Expressing whether a value is present or not.

(* type ’a option = None | Some of ’a *)

let divide x y = if y = 0 then None else Some (x / y)
None = divide 1 0

let getInt ox = match ox with None -> 0 | Some x -> x
2 = getInt (Some 2)

Side Effects —Unit Type

Operations whose use produces a side-effect return the unit type. This’ akin to the role
played by void in C. A function is a sequence of expressions; its return value is the value
of the final expression —all other expressions are of unit type.

(* type unit = () *)
let ex : unit = ()

let myupdate (arr : ’a array) (e : ’a)
(i : int) : unit

= Array.set arr i e

let nums = [| 0; 1; 2|]
myupdate nums 33 1
33 = nums.[1]

let my_io () = printfn "Hello!"

let first x y
= my_io ()

let _ = y
x

let res = first 1972 12

Printing & Integrating with C#

We may use the %A to generically print something.

// ⇒ 1 2.000000 true ni x [1; 4]
printfn "%i %f %b %s %c %A" 1 2.0 true "ni" ’x’ [1; 4]

Let’s use C#’s integer parsing and printing methods:

let x = System.Int32.Parse("3")
System.Console.WriteLine("hello " + string x)

Reads

. � F# Meta-Tutorial
� Learn F# in ~60 minutes —https://learnxinyminutes.com/
� F# for Fun & for Profit! – EBook

◦ Why use F#? —A series of posts
� Microsoft’s .Net F# Guide

◦ F# Language Reference
� Learn F# in One Video —Derek Banas’ “Learn in One Video” Series
� Real World OCaml —F# shares much syntax with OCaml
� F# Wikibook

3

https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/options
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/unit-type
https://docs.microsoft.com/en-us/dotnet/api/system.int32.parse?view=netframework-4.8
https://fsharp.org/learn.html
https://learnxinyminutes.com/docs/fsharp/
https://learnxinyminutes.com/
https://fsharpforfunandprofit.com/series/why-use-fsharp.html
https://fsharpforfunandprofit.com/series/why-use-fsharp.html
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/options
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/options
https://www.youtube.com/watch?v=c7eNDJN758U&list=PLGLfVvz_LVvSX7fVd4OUFp_ODd86H0ZIY&index=47&t=0s
https://www.youtube.com/playlist?list=PLGLfVvz_LVvSX7fVd4OUFp_ODd86H0ZIY
https://realworldocaml.org/
https://en.wikibooks.org/wiki/F_Sharp_Programming

