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Reference Sheet for Discrete Maths

Propositional Calculus ‘

Order of decreasing binding power: =, =, A/V, =/ < | =/#£.

Equivales is the only equivalence relation that is associative
(p=g)=r) = (p=(g=r)),and it is symmetric and has identity true.

Discrepancy (difference) ‘#’ is symmetric, associative, has identity ‘false’, mutually as-
sociates with equivales ((p Z q) =r) = (p #Z (¢ = r)), and mutually interchanges
with it as well (p £ q¢ = 1) (p = q¢ £ r). Finally, negation commutes with
difference: ~(p=q) = p=q.

Implication has the alternative definition p = ¢ = —p V ¢, thus having true as both
left identity and right zero; it distributes over = in the second argument, and is self-
distributive; and has the properties:

Shunting pAg=7r = p=(¢=7) Modus Ponens( )
ers _ pA(p=¢q = pAg
Contrapositive p=¢q¢ = -¢= —p pA(g=p) = p
pAp=4q) = «q

Leibniz e = f = FE[z =¢| = E[z := f]

It is a linear order relation generated by ‘false = true’; whence “from false, follows
anything” false = p. Moreover it has the useful properties “(3.62) Contextualisa-
tion> p = (¢ =7) = pAq = pAr —we have the context p in each side
of the equivalence— and p = (¢ = r) = pAqg = pAr. Implication is “Sub-

q
associative” ((p = q) = r) = (p = (¢ = r)). Finally, we have “=-= Elimination”:
p=gq=r)=>s=p=>s=qg=>s =r=s

Conjunction and disjunction distribute over one another, are both associative and
symmetric, V has identity false and zero true whereas A has identity true and zero
false, Vv distributes over V,=,A,=, < whereas A distributes over = — = in that
pA(g=r=s8) = pAq = pAr = pAs,and they satisfy,

Excluded Middle
pV p

Absorption
PA(QV—p)=pAg
pV(gV-p) =pVg

De Morgan
~(pAg)=-pV—q
“(pVa) =-pA—gq

Contradiction
p A —p= false

Most importantly, they satisfy the “Golden Rule”: pAg=p=q=pVq.

Max 1 and Min | each distribute over the other, addition distributes over both, subtrac-
tion acts like De Morgans, the operators are selective, and non-negative multiplication
distributes over both.

The many other properties of these operations —such as weakening laws and other ab-
sorption laws and case-analysis (L-char)— can be found by looking at the list of lattice
properties —since both the Booleans (=, A, V) and numbers (<, |, 1) are lattices.

An order is a relation T  : 7 — 7 — B satisfying the following three properties:

Mutual Inclusion
aCbAbCa =a=0b

Reflexivity
alCa

Transitivity
aCObANDCc=alc

Indirect Inclusion is like ‘set inclusion’ and Indirect Equality is like ‘set extensionality’.

Indirect Inclusion (from above)
rCy = (VzeyLz=aL2)

Indirect Equality (from above)
z=y = VzexLz=yL2)

Indirect Inclusion (from below)
tCy = (Vzezlux=2zLCy)

Indirect Equality (from below)
x=y = (VzezCax=2LCy)

An order is bounded if there are elements T, L : 7 being the lower and upper bounds of
all other elements:

al T

Top Element Bottom Element 1 Ca

Top is maximal T Ca =a=T Bottom is minimal aC 1L = a= 1

A lattice is a pair of operations M _, U : 7 — 7 — 7 specified by the properties:

M-Characterisation
cCaANcCb=cLC albd

LI-Characterisation
aCecAbCcec =alb C ¢

The operations act as providing the greatest lower bound, ‘glb’, ‘supremum’, or ‘meet’,
by M; and the least upper bound, ‘lub’; ‘infimum’, or ‘join’, by L.

Let (O be one of M or L, then:

Symmetry of [J Associativity of [J Idempotency of [J

alb = ba (adb)de = aO(b0c) alda = a
Zero of 0 Identity of 0 Absorption Self-Distributivity of [J
aUT=T aUl=a afN(bUa)=a ad0bOc) = (adb)d(alc)
anl=1 anNT=a al((Ma)=a
‘Weakening Induced Defs. of Inclusion Golden Rule
/ Strengthening «Cb = alb = b allb = a = b=albd
a T alb alb=alb = a alb =alb = a=b
alb C a aldb T allb = a=b
allb C alUd Monotonicity of [J

aCbANcCd = allc C bd

The following four properties are all equivalent:

M-Selective :: Va,b e aMb=a V allb=a
Linearity :: Va,b @ aCbV bCa Order Complement :: =(a Cb) = bC a
Duality Principle:

If a statement S is a theorem, then so is S[(E,M,U, T, 1) := (3J,u, M, L, T)].

LI-Selective :: Va,b e allb=a V allb=a
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Conditionals

“If to A” may be taken as axiom from which we may prove the remaining ‘alternative

”

definitions’ “if to - -

if to A Plz =ifbthenzelseyfi] = (b = Plz=z]) A (-b = Plz:=zx])
if to v Plz =ifbthenzelseyfi] = (b A Plz=z]) V (b A Plz:=12x])
if to # Plz =ifbthenzelseyfi] = b A Plz=z] # -b A Plz:=zx]
if to = Plz =ifbthenzelseyfi] = b = Plz=2] = -b = Plz:=z]
Note that the “=” and “#” rules can be parsed in multiple ways
since ‘=’ is associative, and ‘=’ mutually associates with ‘Z’.
if true if truethenxelseyfi = =
if false if falsethenzelseyfi = y
then true if Rthentrueelse Pfi = RV P
then false if Rthenfalseelse Pfi = -RA P
else true if Rthen Pelsetruefi = R= P
else false  if Rthen Pelsefalsefi = RA P
if swap if bthen x else y fi if “bthen yelse z fi

if idempotency

if guard strengthening
if Context

if Distributivity

if junctivity

Quantification

if bthenzelsexfi = x

if bthen x else y fi if b A x # ythen x else yfi
if bthen Eelse F'fi = if bthen E[b = true] else F'[b = false] fi

Plz = ifbthenzelseyfi] = if bthen P[z = z]else P[z = y|fi

(if bthen welse y fi) @ (if bthena’ elsey’ fi)
= if bthen (z @ ') else (y ® ') fi

Let _®_ be an associative and symmetric operation with identity Id.

Abbreviation
Empty range
One-point rule
Distributivity
Nesting

Dummy renaming

Disjoint Range split

Range split

Idempotent Range split

@z o P) = (dx | true o P)

x | false ® P) =1d

z | z=F e P)= Plx = F]
z|RePaOQ)=(dz | Re P)®(dz | Re Q)
2,y | XAY e P)=(®x | X ¢ (By | Y o P))
v R'e P)=(ay | Rz =y o Plo=y])

EEERRR

(x| RVS e P)=(®dx | Re P)D(®x | S e Q)
provided R N\ S = false

(®z | RVS e P)® (®x | RAS o P)
(Gz | Re P)& (bz | S o Q)

(x| RVSeP)=(®zx | ReP)d(®x | SeQ)
provided @ is idempotent

The set theoretic symbols €, =, C, are defined as follows.

Axiom, Set Membership: F € {z | R e E}

= (3z|ReF=E)

Axiom, Extensionality: S =T

VeexzeS=xel)

Axiom, Subset: S CT VeezeS=zeT)

As witnessed by the following definitions, it is the € relation that translates set theory to
propositional logic.

Universe zeU = true

Empty set z €D = false
Complement xe~S = x¢S8

Union zesSUT = zxzeSvzeT
Intersection resSNT = xze€eSANzeT
PseudoComplement z€S —T = ze€eS=zeT
Difference xeS-T = xze€SNzgT
Power set S ePT = SCT

The pairs @|false, Ultrue, U|V, N|A, C|=, ~|— are related by € and so all equational
theorems of propositional logic also hold for set theory —indeed, that is because both
are Boolean algebras.

— Set difference is a residual wrt U, and so satisfies the division properties below.

— Subset is an order and so satisfies the aforementioned order properties. It is bounded
below by @) and above by U.

The relationship between set comprehension and quantifier notation is:

Set comprehension as union {r| Re P} = (Uz| Re{P})
Membership as inclusion zesS = {z}CS
Equality as membership r=y = z¢c{y}

‘ Combinatorics

Axiom, Size:
Axiom, Interval:

#S =03z | z€S e1)
m.n = {z:Z | m<z<n}

The following theorems serve to define ‘#’ for the usual set theory operators.

Positive definite

Power set size

Principle of Inclusion-Exclusion
Monotonicity

Difference rule

Complement size

Range size

Interval size

Pigeonhole Principle

( “min < avg < maz”)

#(SUT)=#S+#T —#(SNT)
SCT = #S <#T
SCT=#T-8)=#T—#S
#(~S) =#U — #S

Bz:U |z¢gSel) = #U—#S
#(m.m) = n—m+1 for m<n
(Xi:l.ne E)/n < (Ti:1.n e E)
(Ji:l.ne E)<(Xi:1l.ne E)/n

Rule of sum: #(Ui | Ri e P) = (Xi | Ri e #P)
provided the range is pairwise disjoint: Vi,j ¢ RiARj =1 = 7.

Rule of product: #(xi | Ri e P) (Il: | Ri ® #P)



Converse —an over-approximation of inverse (A4) ‘

Co-distributivity -, Involutive Monotonicity

(z5y)- =y~ - = vEy=a-Cy-
Identity Isotonicity Connection Elimination
Id~ =Id cCy=a-Cyr a-Cb=albr av=y~-=zxz=y

Regular Algebra —Residuals, Division‘

A monoid (7, _$_, Id) that happens to be a complete lattice and admits factorisation
—i.e., there are operations “under \” and “over /” specified as below— is called a regular
algebra.

Characterisation of / Characterisation of \

atbCec = alefb asbCec = bLad\c
Cancellation (a/b)sbCa a3(a\b) C b
Dividing a division a/b)/c = a/(csb) a\(b\e) = (bsa)\c
Division of multiples a C (a$b)/b b C a\(agb)

aCad AbCH = asbCTa'gb
a3(dbMe) C asbMNase

Monotonicity of §
Subdistributivity of § over M

Numerator monotonicity bLC b = a\bLC a\V’ bV =b/aCl/a
Denominator antitonicity a Ca=a\bC a'\b ad Ca=b/laCb/d
Exact division (Jzey=zx32) = zi(z\y)=y
Exact division (Jzey=12\z) = z\(z3y)=y
Modal and Dedekind rules:
agbMe C ag(bMa~ic) a\bMec C a\(bMase)
asbMNe C (aMegb~)gd a\bMec C (aMc\b)\b
asbMc C (aMegb-)s(bMa~ic) a\bMe C (aMc\b)\(bMagc)

Division for the special case § = M is known the relative pseudo-complement: Denoted
x — y (“z implies y”), it is the largest piece ‘outside’ of  that is still included in y. The
relative pseudocomplement internalises inclusion, z C (x — y) = (z Czrz=2zLC y);
more generally: z Cy = Id C z\y.

Semi-complement
a—bCx =albUx

Pseudo-complement
zMalCb=xCa—b

Strong modus ponens Absorption
afM(a—b) = alb (xUb)—b =2x-0
a—(xMNa) = a—ux (a—b)Ub = ald

Division for the special case § = U in the dual order (3) is known as the difference or
relative semi-complement: Denoted = — y (“c without y”), it is the smallest piece that
along with y ‘covers’ x; i.e., it is the least value that ‘complements’ (“fill up together”) y
to include x.

Named Properties

reflexive
irreflexive
transitive
idempotent

T
T
xT
T

IdC z

IdMz =1
iz Cx
rsxr =1x

symmetric r = xv==x
antisymmetric z = Mz~ Cld
asymmetric r = xzMzv=1

The above properties are preserved by converse: Let P be any of the above properties,
then Pz = P(z>).

univalent
total

mapping

I1ISO

88 88
1]

z-ix CId
IdCE zgz~

totalxz A univalentx

mappingx A bijectivex

Duality theorems

univalent (z-)
total (z~)
mapping ()
iso (z~)

Shunting laws:

Relations are sets of pairs ...

Tortoise
Extensionality
Inclusion
Empty
Universe
Complement
Union
Intersection
Difference

univalent f = (
total f

mapping f = (

injective x
surjective x
bijective =
iso x

PseudoComplement

An Identity
The Identity
Converse

Composition

Under Division

Over Division

=

u(R3S)v
w(S\R)wv
u(R/S)v

8RR
s
M
e

injective r = xz3z~LCld
surjective x = IdCz-3zx
bijective r = surjectivex A injectivex

Invertiblility theorems

total x A injectivex = x 3z~ = Id
isor = xsxv=Id A z-iz=1Id
isox = (Jge zig=Id=gs3x)

iy
8 8 8
Inllalln
Le

3z o u(R)x A 2(S)v)
(Vz e z(S)u=xz(R)Iv)
vy e v(S)y=ul(R)y)

Division generalises extensional subset inclusion and indirect reasoning for orders.
- u is related by ‘R over S’ to v precisely when “anything is R-over u if it is S-over v.”

- u is related by ‘S under R’ to v precisely when “everything S-under u is also R-under v.’

4

Example: Define E via t(E)X = z € X, then ACE\E)B = AC B.
Example (Indirect inclusion): Define L via z(L)y = z Cy, then L\L=L/L = L.



Interpreting Named Properties “Relations are simple graphs”

We will interpret the named properties using Relations directly represent simple graphs: Dots (nodes) and at most 1 line (edge)
o Relations: Formulae on sets of pairs; “ Vzr o ...” between any two. E.g., cities and highways
¢ Graphs: Dots and lines on a page Treating R as a graph:
¢ Matrices: 1s and Os on a grid

¢ Programs: Transformations of inputs to outputs R A bunch of dots on a page and an arrow from x to y when t (R)y
R~ Flip the arrows in the graph
DomR The nodes that have an outgoing edge
Ran R The nodes that have an incoming edge
z(R)y A path of length 1 (an edge) from z to y
z(R3R)y A path of length 2 from z to y
RUR~ The associated undirected graph (“symmetric closure”)
Properties of a relationship ﬂavour‘ ‘Properties of an operational ﬂavour‘
The following properties are what one may ascribe to a comparative relationship, such The following properties are what one may ascribe to a process or an operation.
as equality or inclusion.
univalent R = (Vb,e,d @ b(R)cAB(R) = c={)
reflexive R = (Vb e b(R)D)
injective R = (vbbt',c @« b(RYc AV (R)c = b=V
irreflexive R = (Vb e =(b(RID)
symmetric R = (Vbe o b(R)c=c(R)D) total R = (vb e 3c o b(R)c)

antisymmetric R

(Vbc @ bCR)cAcCRIb = b=¢)

surjective R (Ve o 3b @« b(R)0)

asymmetric R = (Vbec o b(R)c = —(c(CR)D))
transitive R = (vb,c,d @« b(R)c(R)d = b(R)d) mapping R = total R A univalent R
idempotent R =

bijective R = surjective R A injective R

Intuitively, by considering the interpretations only, we find

reflexive R A transitive R = idempotent R

iso R

mapping R A bijective R
Intuitively, by considering the interpretations only, we find a simple graph that is total or
surjective, is necessarily connected: There are no isolated (“forever alone”) nodes.




