November 24, 2020

Reference Sheet for Discrete Maths

Propositional Calculus

Order of decreasing binding power: =, \neg , \land/\lor , \Rightarrow/\Leftarrow , $\equiv/\not\equiv$.

Equivales is the only equivalence relation that is associative $((p \equiv q) \equiv r) \equiv (p \equiv (q \equiv r))$, and it is symmetric and has identity true.

Discrepancy (difference) ' $\not\equiv$ ' is symmetric, associative, has identity 'false', mutually associates with equivales $((p \not\equiv q) \equiv r) \equiv (p \not\equiv (q \equiv r))$, and mutually interchanges with it as well $(p \not\equiv q \equiv r) \equiv (p \equiv q \not\equiv r)$. Finally, negation commutes with difference: $\neg(p \equiv q) \equiv \neg p \equiv q$.

Implication has the alternative definition $p \Rightarrow q \equiv \neg p \lor q$, thus having true as both left identity and right zero; it distributes over \equiv in the second argument, and is self-distributive; and has the properties:

Shunting $p \land q \Rightarrow r \equiv p \Rightarrow (q \Rightarrow r)$	Modus Ponens
Contrapositive $p \Rightarrow q \equiv \neg q \Rightarrow \neg p$	$egin{array}{rcl} p \wedge (p \Rightarrow q) &\equiv & p \wedge q \ p \wedge (q \Rightarrow p) &\equiv & p \end{array}$
Leibniz $e = f \Rightarrow E[z \coloneqq e] = E[z \coloneqq f]$	

It is a *linear* order relation generated by 'false \Rightarrow true'; whence "from false, follows anything": false $\Rightarrow p$. Moreover it has the useful properties "(3.62) Contextualisation": $p \Rightarrow (q \equiv r) \equiv p \land q \equiv p \land r$ —we have the context p in each side of the equivalence— and $p \Rightarrow (q \Rightarrow r) \equiv p \land q \Rightarrow p \land r$. Implication is "Subassociative": $((p \Rightarrow q) \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$. Finally, we have " \equiv - \equiv Elimination": $(p \equiv q \equiv r) \Rightarrow s \equiv p \Rightarrow s \equiv q \Rightarrow s \equiv r \Rightarrow s$.

Conjunction and disjunction distribute over one another, are both associative and symmetric, \lor has identity false and zero true whereas \land has identity true and zero false, \lor distributes over $\lor, \equiv, \land, \Rightarrow$, \Leftarrow whereas \land distributes over $\equiv -\equiv$ in that $p \land (q \equiv r \equiv s) \equiv p \land q \equiv p \land r \equiv p \land s$, and they satisfy,

Excluded Middle	Contradiction	Absorption	De Morgan
$p \vee \neg p$	$p \wedge \neg p \equiv false$	$p \wedge (q \vee \neg p) \equiv p \wedge q$	$\neg (p \land q) \equiv \neg p \lor \neg q$
		$p \lor (q \lor \neg p) \equiv p \lor q$	$\neg (p \lor q) \equiv \neg p \land \neg q$

Most importantly, they satisfy the "Golden Rule": $p \land q \equiv p \equiv q \equiv p \lor q$.

Max \uparrow and **Min** \downarrow each distribute over the other, addition distributes over both, subtraction acts like De Morgans, the operators are selective, and non-negative multiplication distributes over both. (*Tropical mathematics* is math with ' \uparrow , +' instead of '+, ×'.)

The many other properties of these operations —such as weakening laws and other absorption laws and case-analysis (\sqcup -char)— can be found by looking at the list of *lattice properties* —since *both* the Booleans (\Rightarrow , \land , \lor) and numbers (\leq , \downarrow , \uparrow) are lattices.

Orders

An order is a relation $_$ \sqsubseteq $_$: $\tau \to \tau \to \mathbb{B}$ satisfying the following three properties:

Reflexivity	Transitivity	Mutual Inclusion
$a \sqsubseteq a$	$a \sqsubseteq b \land b \sqsubseteq c \Rightarrow a \sqsubseteq c$	$a \sqsubseteq b \land b \sqsubseteq a \equiv a = b$

Indirect Inclusion is like 'set inclusion' and Indirect Equality is like 'set extensionality'.

Indirect Equality (from above)	Indirect Inclusion (from above)
$x = y \equiv (\forall z \bullet x \sqsubseteq z \equiv y \sqsubseteq z)$	$x \sqsubseteq y \equiv (\forall z \bullet y \sqsubseteq z \Rightarrow x \sqsubseteq z)$
Indirect Equality (from below)	Indirect Inclusion (from below)
$x = y \equiv (\forall z \bullet z \sqsubseteq x \equiv z \sqsubseteq y)$	$x \sqsubseteq y \equiv (\forall z \bullet z \sqsubseteq x \Rightarrow z \sqsubseteq y)$
order is hounded if there are elements.	\cdot \cdot τ being the lower and upper bound

An order is *bounded* if there are elements $\top, \perp : \tau$ being the lower and upper bounds of all other elements:

Top Element	$a \sqsubseteq \top$	Bottom Element	$\perp \sqsubseteq a$
Top is maximal	$\top \sqsubseteq a \ \equiv \ a = \top$	Bottom is minimal	$a \sqsubseteq \bot \equiv a = \bot$

Lattices

A *lattice* is a pair of operations $_\sqcap_$, $_\sqcup_$: $\tau \to \tau \to \tau$ specified by the properties:

\sqcup -Characterisation	\sqcap -Characterisation
$a \sqsubseteq c \land b \sqsubseteq c \equiv a \sqcup b \sqsubseteq c$	$c \sqsubseteq a \land c \sqsubseteq b \equiv c \sqsubseteq a \sqcap b$

The operations act as providing the greatest lower bound, 'glb', 'supremum', or 'meet', by \sqcap ; and the least upper bound, 'lub', 'infimum', or 'join', by \sqcup .

Let \Box be one of \sqcap or \sqcup , then:

1	Symmetry of \Box Associativity of \Box Idempotency of \Box $a \Box b$ $b \Box a$ $(a \Box b) \Box c$ $a \Box (b \Box c)$ $a \Box a$
) t	$\begin{array}{c cccc} \mathbf{Zero} \ \mathbf{of} \ \square & \mathbf{Identity} \ \mathbf{of} \ \square & \mathbf{Absorption} \\ a \sqcup \top = \top & a \sqcup \bot = a \\ a \sqcap \bot = \bot & a \sqcap \top = a \end{array} \begin{array}{c cccc} \mathbf{Absorption} & \mathbf{Self-Distributivity} \ \mathbf{of} \ \square \\ a \square (b \square a) = a \\ a \sqcup (b \square a) = a \end{array}$
-	Weakening / Strengthening $a \sqsubseteq a \sqcup b$ Induced Defs. of Inclusion $a \sqsupset b = a$ Golden Rule $a \sqsubseteq a \sqcup b$
ı	The following four properties are all equivalent:
	$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$

Duality Principle:

If a statement S is a theorem, then so is $S[(\Box, \sqcap, \sqcup, \top, \bot) := (\beth, \sqcup, \sqcap, \bot, \top)].$

Conditionals

"If to \wedge " may be taken as axiom from which we may prove the remaining 'alternative definitions' "if to \cdots ".

 $\begin{array}{lll} \mathbf{if} \ \mathbf{to} \land & P[z \coloneqq \mathbf{if} \ b \ \mathbf{then} \ x \ \mathbf{else} \ y \ \mathbf{fi}] & \equiv & (b \Rightarrow P[z \coloneqq x]) \land (\neg b \Rightarrow P[z \coloneqq x]) \\ \mathbf{if} \ \mathbf{to} \lor & P[z \coloneqq \mathbf{if} \ b \ \mathbf{then} \ x \ \mathbf{else} \ y \ \mathbf{fi}] & \equiv & (b \land P[z \coloneqq x]) \lor (\neg b \land P[z \coloneqq x]) \\ \mathbf{if} \ \mathbf{to} \not\equiv & P[z \coloneqq \mathbf{if} \ b \ \mathbf{then} \ x \ \mathbf{else} \ y \ \mathbf{fi}] & \equiv & b \land P[z \coloneqq x] \not\equiv & \neg b \land P[z \coloneqq x] \\ \mathbf{if} \ \mathbf{to} \equiv & P[z \coloneqq \mathbf{if} \ b \ \mathbf{then} \ x \ \mathbf{else} \ y \ \mathbf{fi}] & \equiv & b \Rightarrow P[z \coloneqq x] & \equiv & \neg b \Rightarrow P[z \coloneqq x] \\ \end{array}$

Note that the " \equiv " and " \neq " rules can be parsed in multiple ways since ' \equiv ' is associative, and ' \equiv ' mutually associates with ' \neq '.

if swap	if b then x else y fi = if $\neg b$ then y else x fi
if idempotency	if b then x else x fi = x

if guard strengtheningif b then x else y fiif $b \wedge x \neq y$ then x else y fiif Contextif b then E else F fiif b then $E[b \coloneqq true]$ else $F[b \vDash false]$ fiif Distributivity $P[z \coloneqq if b$ then x else y fi]if b then $P[z \coloneqq x]$ else $P[z \coloneqq y]$ f

if junctivity

```
P[z \coloneqq \text{if } b \text{ then } x \text{ else } y \text{ fi}] = \text{if } b \text{ then } P[z \coloneqq x] \text{ else } P[z \coloneqq y] \text{ fi}(\text{if } b \text{ then } x \text{ else } y \text{ fi}) \oplus (\text{if } b \text{ then } x' \text{ else } y' \text{ fi})= \text{if } b \text{ then } (x \oplus x') \text{ else } (y \oplus y') \text{ fi}
```

Quantification

Let $_\oplus_$ be an associative and symmetric operation with identity Id.

Abbreviation Empty range One-point rule Distributivity Nesting Dummy renaming	$\begin{array}{l} (\oplus x \bullet P) = (\oplus x \mid true \bullet P) \\ (\oplus x \mid false \bullet P) = Id \\ (\oplus x \mid x = E \bullet P) = P[x \coloneqq E] \\ (\oplus x \mid R \bullet P \oplus Q) = (\oplus x \mid R \bullet P) \oplus (\oplus x \mid R \bullet Q) \\ (\oplus x, y \mid X \land Y \bullet P) = (\oplus x \mid X \bullet (\oplus y \mid Y \bullet P)) \\ (\oplus x \mid R \bullet P) = (\oplus y \mid R[x \coloneqq y] \bullet P[x \equiv y]) \end{array}$
Disjoint Range split	$(\oplus x \mid R \lor S \bullet P) = (\oplus x \mid R \bullet P) \oplus (\oplus x \mid S \bullet Q)$ provided $R \land S \equiv false$
Range split	$(\bigoplus x \mid R \lor S \bullet P) \oplus (\bigoplus x \mid R \land S \bullet P) = (\bigoplus x \mid R \bullet P) \oplus (\bigoplus x \mid S \bullet Q)$
Idempotent Range split	$(\oplus x \mid R \lor S \bullet P) = (\oplus x \mid R \bullet P) \oplus (\oplus x \mid S \bullet Q)$ provided \oplus is idempotent

Set Theory

The set theoretic symbols \in , =, \subseteq , are defined as follows.

Axiom, Set Membership: $F \in \{x \mid R \bullet E\} \equiv (\exists x \mid R \bullet F = E)$

Axiom, Extensionality: $S = T \equiv (\forall x \bullet x \in S \equiv x \in T)$

Axiom, Subset: $S \subseteq T \equiv (\forall x \bullet x \in S \Rightarrow x \in T)$

As witnessed by the following definitions, it is the \in relation that *translates set theory to propositional logic*.

Universe	$x \in \mathbf{U}$	\equiv	true
Empty set	$x \in \emptyset$	\equiv	false
Complement	$x \in {\sim}S$	\equiv	$x\not\in S$
Union	$x \in S \cup T$	\equiv	$x\in S\vee x\in T$
Intersection	$x\in S\cap T$	\equiv	$x\in S\wedge x\in T$
PseudoComplement	$x\in S\twoheadrightarrow T$	\equiv	$x\in S \Rightarrow x\in T$
Difference	$x \in S - T$	\equiv	$x\in S\wedge x\not\in T$
Power set	$S \in \mathbb{P}T$	\equiv	$S \subseteq T$

The pairs \emptyset false, \mathbf{U} |true, $\cup |\vee, \cap |\wedge, \subseteq |\Rightarrow, \sim |\neg$ are related by \in and so all equational theorems of propositional logic also hold for set theory —indeed, that is because both are Boolean algebras.

→ Set difference is a residual wrt \cup , and so satisfies the division properties below. → Subset is an order and so satisfies the aforementioned order properties. It is bounded below by \emptyset and above by **U**.

The relationship between set comprehension and quantifier notation is:

Set comprehension as union	$\{x \mid R \bullet P\} = (\cup x \mid R \bullet \{P\})$
Membership as inclusion	$x \in S \equiv \{x\} \subseteq S$
Equality as membership	$x = y \equiv x \in \{y\}$

Combinatorics

Axiom, Size:
$$\#S = (\Sigma x \mid x \in S \bullet 1)$$

Axiom, Interval: $m.n = \{x : \mathbb{Z} \mid m \le x \le n\}$

The following theorems serve to define '#' for the usual set theory operators.

Positive definite	$\#S \leq 0 \equiv S = \emptyset$
Power set size	$\#\mathbb{P}S = 2^{\#S}$
Principle of Inclusion-Exclusion	$\#(S \cup T) = \#S + \#T - \#(S \cap T)$
Monotonicity	$S \subseteq T \Rightarrow \#S \le \#T$
Difference rule	$S \subseteq T \Rightarrow \#(T-S) = \#T - \#S$
Complement size	$\#(\sim S) = \# \dot{\mathbf{U}} - \# \dot{S}$
Range size	$(\Sigma x : \mathbf{U} \mid x \notin S \bullet 1) = \#\mathbf{U} - \#S$
Interval size	$\#(mn) = n - m + 1$ for $m \le n$
Pigeonhole Principle	$(\Sigma i : 1n \bullet E)/n \leq (\uparrow i : 1n \bullet E)$
$("min \leq avg \leq max")$	$(\downarrow i: 1n \bullet E) \leq (\Sigma i: 1n \bullet E)/n$

Rule of sum: $\#(\cup i \mid Ri \bullet P) = (\Sigma i \mid Ri \bullet \#P)$ provided the range is pairwise disjoint: $\forall i, j \bullet Ri \land Rj \equiv i = j$.

Rule of product: $\#(\times i \mid Ri \bullet P) = (\Pi i \mid Ri \bullet \#P)$

Converse — an over-approximation of inverse (A4)

Co-distributivity ~, Involutive Monotonicity $(x \circ y) = y \circ x$ $x \smile = x$ $x \sqsubset y \Rightarrow x \lor \sqsubset y \lor$ Identity Isotonicity Connection Elimination $\mathsf{Id}^{\checkmark} = \mathsf{Id} \qquad x \sqsubset y \equiv x^{\checkmark} \sqsubset y^{\backsim} \qquad a^{\backsim} \sqsubset b \equiv a \sqsubset b^{\backsim} \qquad x^{\backsim} = y^{\backsim} \equiv x = y$

Regular Algebra —Residuals, Division

A monoid $(\tau, _, Id)$ that happens to be a complete lattice and admits factorisation —i.e., there are operations "under \" and "over /" specified as below— is called a *regular* algebra.

> Characterisation of / Characterisation of \setminus $a \, ; b \sqsubseteq c \equiv a \sqsubseteq c/b$ $a \ b \ \Box \ c \equiv b \ \Box \ a \ c$

When β is symmetric, as in the special cases $\beta = \Box$, the divisions coincide: $x/y = y \setminus x$.

(a/b); $b \sqsubset a$ Cancellation $a \, (a \setminus b) \sqsubset b$ Dividing a division $(a/b)/c = a/(c \, \Im \, b)$ $a \setminus (b \setminus c) = (b \circ a) \setminus c$ Division of multiples $a \sqsubset (a \ b)/b$ $b \sqsubseteq a \setminus (a \ b)$

 $a \sqsubset a' \land b \sqsubset b' \Rightarrow a \ b \sqsubset a' \ b'$ Monotonicity of 3 **Subdistributivity of** ; over $\sqcap a$; $(b \sqcap c) \sqsubseteq a$; $b \sqcap a$; c

Numerator monotonicity $b \sqsubset b' \Rightarrow a \setminus b \sqsubset a \setminus b'$ $b \sqsubset b' \Rightarrow b/a \sqsubset b'/a$ $a' \sqsubseteq a \Rightarrow \dot{b}/a \sqsubseteq \dot{b}/a'$ **Denominator antitonicity** $a' \sqsubset a \Rightarrow a \setminus b \sqsubset a' \setminus b$ **Exact division** $(\exists z \bullet y = x \, ; z) \equiv x \, ; (x \setminus y) = y$ **Exact division** $(\exists z \bullet y = x \setminus z) \equiv x \setminus (x \circ y) = y$

Modal and Dedekind rules: (\Box instead of = since Ω may not be cancellable)

(Axioms)	(Theorems)
$a \$ b \sqcap c \ \sqsubseteq \ a \$(b \sqcap a \smile \$ c)$	$a \setminus b \sqcap c \sqsubseteq a \setminus (b \sqcap a \S c)$
$a \mathrm{s} b \sqcap c \sqsubseteq (a \sqcap c \mathrm{s} b^{\smile}) \mathrm{s} b$	$a \setminus b \sqcap c \sqsubseteq (a \sqcap c \setminus b) \setminus b$
$a vec{}_{s} b \sqcap c \ \sqsubseteq \ (a \sqcap c vec{}_{s} b^{\smile}) vec{}_{s} (b \sqcap a^{\smile} vec{}_{s} c)$	$a \ b \sqcap c \sqsubseteq (a \sqcap c \ b) \ (b \sqcap a \ c)$

Division for the special case $\mathfrak{s} = \square$ is known the relative pseudo-complement: Denoted $x \rightarrow y$ ("x implies y"), it is the largest piece 'outside' of x that is still included in y. The relative pseudocomplement internalises inclusion, $z \sqsubseteq (x \rightarrow y) \Rightarrow (z \sqsubseteq x \Rightarrow z \sqsubseteq y)$; more generally: $x \sqsubset y \equiv \mathsf{Id} \sqsubset x \setminus y$.

Pseudo-complement	Semi-complement
$x \sqcap a \sqsubseteq b \equiv x \sqsubseteq a \rightarrow b$	$a - b \sqsubseteq x \equiv a \sqsubseteq b \sqcup x$
Strong modus ponens	Absorption
$a \sqcap (a \multimap b) = a \sqcap b$	$(x \sqcup b) - b = x - b$
$a \multimap (x \sqcap a) = a \multimap x$	$(a - b) \sqcup b = a \sqcup b$

Division for the special case $\mathfrak{s} = \sqcup$ in the *dual order* (\supseteq) is known as *the difference* or relative semi-complement: Denoted x - y ("x without y"), it is the smallest piece that along with y 'covers' x; i.e., it is the least value that 'complements' ("fill up together") y to include x. (Possibly for this reason, set difference is sometimes denoted $S \setminus T$ in other books!)

Named Properties

reflexive	x	\equiv	$Id \sqsubseteq x$	symmetric	x	\equiv	$x{\scriptstyle\smile}=x$
irreflexive	x	\equiv	$Id\sqcap x=\bot$	antisymmetric	x	\equiv	$x \sqcap x {\scriptstyle\smile} \sqsubseteq Id$
transitive	x	\equiv	$x \$ x \sqsubseteq x$	asymmetric	x	\equiv	$x \sqcap x {\scriptstyle\smile} = \bot$
idempotent	x	\equiv	$x \mathring{\!\!\!\!} x=x$				

The above properties are preserved by converse: Let P be any of the above properties, then $Px \equiv P(x \sim)$.

univalent xinjective $x \sim$; $x \sqsubseteq \mathsf{Id}$ x : $x \sim \Box \operatorname{Id}$ \equiv x \equiv $\mathsf{Id} \sqsubset x \, \mathrm{s} \, x^{\smile}$ surjective $x \equiv$ $\mathsf{Id} \sqsubset x \lor \mathfrak{s} x$ total x \equiv bijective \equiv total $x \land$ univalent x \equiv surjective $x \land$ injective xmapping xxmapping $x \land$ bijective xiso x \equiv

Invertiblility theorems

Duality theorems

univalent $(x \sim)$	\equiv	injective x	total $x \land injective \ x \Rightarrow x x^{\smile} = Id$
total $(x \sim)$	\equiv	surjective x	iso $x \equiv x \Im x = Id \wedge x \Im x = Id$
mapping $(x \sim)$	\equiv	bijective x	iso $x \Rightarrow (\exists g \bullet x \ g = Id = g \ x)$
iso $(r \sim)$	=	iso r	

Shunting laws:

iso

univalent <i>f</i>	\Rightarrow	$(x \S f \sqsubseteq y \iff x \sqsubseteq y \S f^{\smile})$
total f	\Rightarrow	$(x \mathrm{\r{g}} f \sqsubseteq y \ \Rightarrow \ x \sqsubseteq y \mathrm{\r{g}} f \smile)$
mapping f	\Rightarrow	$(x \Im f \sqsubseteq y \equiv x \sqsubseteq y \Im f \smile)$

Relations

Relations are sets of pairs ...

Tortoise	x (R) y	\equiv	$\langle x, y \rangle \in R$
Extensionality	R = S	\equiv	$(\forall x, y \bullet x (R) y \equiv x (S) y)$
Inclusion	$R \subseteq S$	\equiv	$(\forall x, y \bullet x (R) y \Rightarrow x (S) y)$
Empty	u (Ø) v	\equiv	false
Universe	$u (A \times B) v$	\equiv	$u \in A \land v \in B$
Complement	u ($\sim S$) v	\equiv	$\neg(u (S) v)$
Union	u ($S \cup T$) v	\equiv	u (S) $v \lor u$ (T) v
Intersection	$u (S \cap T) v$	\equiv	u (S) $v \wedge u$ (T) v
Difference	u (S - T) v	\equiv	$u (S) v \land \neg (u (T) v)$
PseudoComplement	$u (S \rightarrow T) v$	\equiv	$u(S)v \Rightarrow u(T)v$
An Identity	u (I A) v	\equiv	$u = v \in A$
The Identity	u (Id) v	\equiv	u = v
Converse	u (R∽) v	\equiv	$v \in R $) u
Composition	u (R ; S) v	\equiv	$(\exists x \bullet u(R) x \wedge x(S) v)$
Under Division	$u (S \setminus R) v$	\equiv	$(\forall x \bullet x (S) u \Rightarrow x (R) v)$
Over Division	$u \left(R/S \right) v$	\equiv	$(\forall y \bullet v (S) y \Rightarrow u (R) y)$

Division generalises extensional subset inclusion and indirect reasoning for orders. - u is related by 'R over S' to v precisely when "anything is R-over u if it is S-over v." - u is related by 'S under R' to v precisely when "everything S-under u is also R-under v."

Example: Define E via $x \in X$, then $A \in E \setminus E$ $B \equiv A \subseteq B$. **Example (Indirect inclusion):** Define L via $x (L) y \equiv x \Box y$, then $L \setminus L = L/L = L$.

Interpreting Named Properties

We will interpret the named properties using

- ♦ Relations: Formulae on sets of pairs; " $\forall x \bullet \dots$ "
- $\diamond~$ Graphs: Dots and lines on a page
- $\diamond~$ Matrices: 1s and 0s on a grid
- ♦ Programs: Transformations of inputs to outputs

Properties of a relationship flavour

The following properties are what one may ascribe to a *comparative relationship*, such as equality or inclusion.

reflexive	R	≡	$(\forall b \bullet b (R) b)$ Every node in a graph has a 'loop', a line to itself (Thus, paths can always be increased in length: $R \subseteq R$; R) The diagonal of a matrix is all 1s
irreflexive	R	≡	$(\forall b \bullet \neg (b (R) b))$ No node in a graph has a loop The diagonal of a matrix is all 0s
symmetric	R	≡	$(\forall b, c \bullet b (R) c \equiv c (R) b)$ The graph is undirected; we have a symmetric matrix
antisymmetric	R	≡	$(\forall b, c \bullet b(R) c \land c(R) b \Rightarrow b = c)$ Mutually related nodes are necessarily self-loops "Mutually related items are necessarily indistinguishable"
asymmetric	R	≡	$(\forall b, c \bullet b(R)c \Rightarrow \neg(c(R)b))$ At most 1 edge (regardless of direction) relating any 2 nodes
transitive	R	≡	$(\forall b, c, d \bullet b(R)c(R)d \Rightarrow b(R)d)$ Paths can always be shortened (but nonempty)
idempotent	R	≡	Lengths of paths can be changed arbitrarily (nonzero) Prog: Outputs fed back into the program don't change. Ex: Pressing 'send' on an email only sends it once.
Intuitively, by considering the interpretations only, we find			

reflexive $R \land \text{transitive } R \Rightarrow \text{idempotent } R$

Intuitively, by considering the interpretations only, we find a simple graph that is total or surjective, is necessarily connected: There are no isolated ("forever alone") nodes.

"Relations are simple graphs"

Relations directly represent *simple graphs*: Dots (*nodes*) and at most 1 line (*edge*) between any two. E.g., cities and highways (ignoring multiple highways).

Treating R as a graph:

R	A bunch of dots on a page and an arrow from x to y when $x (R) y$
$R \sim$	Flip the arrows in the graph
DomR	The nodes that have an outgoing edge
RanR	The nodes that have an incoming edge
x (R) y	A path of length 1 (an edge) from x to y
x (R ; Ř) y	A path of length 2 from x to y
$R\cup R{\scriptstyle\smile}$	The associated undirected graph ("symmetric closure")

Properties of an operational flavour

The following properties are what one may ascribe to a *process* or an *operation*.

R; $R)$	univalent	R	≡	$(\forall b, c, c' \bullet b \ (R) c \land b \ (R) c' \Rightarrow c = c')$ —aka "partial function" Graph: Every node has at most one outgoing edge Matrix: Every row has at most one 1 Prog: The program is deterministic, same-input yields same-output
	injective	R	≡	$(\forall b, b', c \bullet b (R) c \land b' (R) c \Rightarrow b = b')$ Graph: Every node has at most one incoming edge Matrix: Every column has at most one 1 Prog: The program preserves distinctness (by contraposition)
	total	R	≡	$(\forall b \bullet \exists c \bullet b (R) c)$ Graph: Every node has at least one outgoing edge Matrix: Every row has at least one 1 Prog: The program terminates; has at least one output for each input
le" nodes	surjective	R	≡	$(\forall c \bullet \exists b \bullet b (R) c)$ Graph: Every node has at least one incoming edge Matrix: Every column has at least one 1 Prog: All possible outputs arise from some input
	mapping	R	≡	total $R \wedge$ univalent R —also known as a "(total) function" Graph: Every node has exactly one outgoing edge Matrix: Every row has exactly one 1 Prog: The program always terminates with a unique output
). 	bijective	R	≡	surjective $R \wedge$ injective R Graph: Every node has exactly one incoming edge Matrix: Every column has exactly one 1 Prog: Every output arises from a unique input
otal or	iso	R	≡	mapping $R \wedge$ bijective R Graph: It's a bunch of 'circles' Matrix: It's a permutation; a re-arrangement of the identity matrix Prog: A non-lossy protocol associating inputs to outputs