
Musa Al-hassy and Wolfram Kahl November 24, 2020

Reference Sheet for Discrete Maths

Propositional Calculus

Order of decreasing binding power: =, ¬, ∧/∨, ⇒/⇐ , ≡/6≡.

Equivales is the only equivalence relation that is associative
((p ≡ q) ≡ r) ≡ (p ≡ (q ≡ r)), and it is symmetric and has identity true.

Discrepancy (difference) ‘6≡’ is symmetric, associative, has identity ‘false’, mutually as-
sociates with equivales ((p 6≡ q) ≡ r) ≡ (p 6≡ (q ≡ r)), and mutually interchanges
with it as well (p 6≡ q ≡ r) ≡ (p ≡ q 6≡ r). Finally, negation commutes with
difference: ¬(p ≡ q) ≡ ¬p ≡ q.

Implication has the alternative definition p ⇒ q ≡ ¬p ∨ q, thus having true as both
left identity and right zero; it distributes over ≡ in the second argument, and is self-
distributive; and has the properties:

Shunting p ∧ q ⇒ r ≡ p⇒ (q ⇒ r)

Contrapositive p⇒ q ≡ ¬q ⇒ ¬p
Leibniz e = f ⇒ E[z := e] = E[z := f]

Modus Ponens hi
p ∧ (p⇒ q) ≡ p ∧ q
p ∧ (q ⇒ p) ≡ p
p ∧ (p⇒ q) ⇒ q

It is a linear order relation generated by ‘false ⇒ true’; whence “from false, follows
anything”: false ⇒ p. Moreover it has the useful properties “(3.62) Contextualisa-
tion”: p ⇒ (q ≡ r) ≡ p ∧ q ≡ p ∧ r —we have the context p in each side
of the equivalence— and p ⇒ (q ⇒ r) ≡ p ∧ q ⇒ p ∧ r. Implication is “Sub-
associative”: ((p ⇒ q) ⇒ r) ⇒ (p ⇒ (q ⇒ r)). Finally, we have “≡-≡ Elimination”:
(p ≡ q ≡ r)⇒ s ≡ p⇒ s ≡ q ⇒ s ≡ r ⇒ s.

Conjunction and disjunction distribute over one another, are both associative and
symmetric, ∨ has identity false and zero true whereas ∧ has identity true and zero
false, ∨ distributes over ∨,≡,∧,⇒, ⇐ whereas ∧ distributes over ≡ − ≡ in that
p ∧ (q ≡ r ≡ s) ≡ p ∧ q ≡ p ∧ r ≡ p ∧ s, and they satisfy,

Excluded Middle Contradiction Absorption De Morgan
p ∨ ¬p p ∧ ¬p ≡ false p ∧ (q ∨ ¬p) ≡ p ∧ q ¬(p ∧ q) ≡ ¬p ∨ ¬q

p ∨ (q ∨ ¬p) ≡ p ∨ q ¬(p ∨ q) ≡ ¬p ∧ ¬q

Most importantly, they satisfy the “Golden Rule” : p ∧ q ≡ p ≡ q ≡ p ∨ q.

Max ↑ and Min ↓ each distribute over the other, addition distributes over both, subtrac-
tion acts like De Morgans, the operators are selective, and non-negative multiplication
distributes over both. (Tropical mathematics is math with ‘↑, +’ instead of ‘+, ×’.)

The many other properties of these operations —such as weakening laws and other ab-
sorption laws and case-analysis (t-char)— can be found by looking at the list of lattice
properties —since both the Booleans (⇒, ∧, ∨) and numbers (≤, ↓, ↑) are lattices.

Orders

An order is a relation _ v _ : τ → τ → B satisfying the following three properties:

Reflexivity Transitivity Mutual Inclusion
a v a a v b ∧ b v c ⇒ a v c a v b ∧ b v a ≡ a = b

Indirect Inclusion is like ‘set inclusion’ and Indirect Equality is like ‘set extensionality’.

Indirect Equality (from above) Indirect Inclusion (from above)
x = y ≡ (∀z • x v z ≡ y v z) x v y ≡ (∀z • y v z ⇒ x v z)

Indirect Equality (from below) Indirect Inclusion (from below)
x = y ≡ (∀z • z v x ≡ z v y) x v y ≡ (∀z • z v x⇒ z v y)

An order is bounded if there are elements >,⊥ : τ being the lower and upper bounds of
all other elements:

Top Element a v > Bottom Element ⊥ v a

Top is maximal > v a ≡ a = > Bottom is minimal a v ⊥ ≡ a = ⊥

Lattices

A lattice is a pair of operations _u_, _t_ : τ → τ → τ specified by the properties:

t-Characterisation u-Characterisation
a v c ∧ b v c ≡ a t b v c c v a ∧ c v b ≡ c v a u b

The operations act as providing the greatest lower bound, ‘glb’, ‘supremum’, or ‘meet’,
by u; and the least upper bound, ‘lub’, ‘infimum’, or ‘join’, by t.

Let � be one of u or t, then:

Symmetry of � Associativity of � Idempotency of �
a�b = b�a (a�b)�c = a�(b�c) a�a = a

Zero of � Identity of � Absorption Self-Distributivity of �
a t > = > a t ⊥ = a a u (b t a) = a a�(b�c) = (a�b)�(a�c)
a u ⊥ = ⊥ a u > = a a t (b u a) = a

Weakening Induced Defs. of Inclusion Golden Rule
/ Strengthening a v b ≡ a t b = b a u b = a ≡ b = a t b
a v a t b a v b ≡ a u b = a a u b = a t b ≡ a = b
a u b v a a t b v a u b ≡ a = b
a u b v a t b Monotonicity of �

a v b ∧ c v d ⇒ a�c v b�d

The following four properties are all equivalent:
u-Selective :: ∀a, b • a u b = a ∨ a u b = a t-Selective :: ∀a, b • a t b = a ∨ a t b = a
Linearity :: ∀a, b • a v b ∨ b v a Order Complement :: ¬(a v b) ≡ b < a

Duality Principle:
If a statement S is a theorem, then so is S[(v,u,t,>,⊥) := (w,t,u,⊥,>)].

1

http://www.cas.mcmaster.ca/~alhassm/
http://www.cas.mcmaster.ca/~kahl/
https://ac.els-cdn.com/S0020019000002052/1-s2.0-S0020019000002052-main.pdf?_tid=35e86bb2-edb0-11e7-b1fe-00000aab0f26&acdnat=1514672861_56b3d86466d284cbc76cc2641c47af86

Conditionals

“If to ∧” may be taken as axiom from which we may prove the remaining ‘alternative
definitions’ “if to · · · ”.

if to ∧ P [z := if b thenx else y fi] ≡ (b ⇒ P [z := x]) ∧ (¬b ⇒ P [z := x])

if to ∨ P [z := if b thenx else y fi] ≡ (b ∧ P [z := x]) ∨ (¬b ∧ P [z := x])

if to 6≡ P [z := if b thenx else y fi] ≡ b ∧ P [z := x] 6≡ ¬b ∧ P [z := x]

if to ≡ P [z := if b thenx else y fi] ≡ b ⇒ P [z := x] ≡ ¬b ⇒ P [z := x]

Note that the “≡” and “ 6≡” rules can be parsed in multiple ways
since ‘≡’ is associative, and ‘≡’ mutually associates with ‘ 6≡’.

if true if true thenx else y fi = x
if false if false thenx else y fi = y
then true if R then true elseP fi = R ∨ P
then false if R then false elseP fi = ¬R ∧ P
else true if R thenP else true fi = R⇒ P
else false if R thenP else false fi = R ∧ P

if swap if b thenx else y fi = if ¬b then y elsex fi
if idempotency if b thenx elsex fi = x

if guard strengthening if b thenx else y fi = if b ∧ x 6= y thenx else y fi
if Context if b thenE elseF fi = if b thenE[b := true] elseF [b := false] fi

if Distributivity P [z := if b thenx else y fi] = if b thenP [z := x] elseP [z := y] fi

if junctivity
(
if b thenx else y fi

)
⊕

(
if b thenx′ else y′ fi

)
= if b then (x⊕ x′) else (y ⊕ y′) fi

Quantification

Let _⊕_ be an associative and symmetric operation with identity Id.

Abbreviation (⊕x • P) = (⊕x | true • P)
Empty range (⊕x | false • P) = Id
One-point rule (⊕x | x = E • P) = P [x := E]
Distributivity (⊕x | R • P ⊕Q) = (⊕x | R • P)⊕ (⊕x | R • Q)
Nesting (⊕x, y | X ∧ Y • P) = (⊕x | X • (⊕y | Y • P))
Dummy renaming (⊕x | R • P) = (⊕y | R[x := y] • P [x := y])

Disjoint Range split (⊕x | R ∨ S • P) = (⊕x | R • P)⊕ (⊕x | S • Q)
provided R ∧ S ≡ false

Range split (⊕x | R ∨ S • P)⊕ (⊕x | R ∧ S • P)
= (⊕x | R • P)⊕ (⊕x | S • Q)

Idempotent Range split (⊕x | R ∨ S • P) = (⊕x | R • P)⊕ (⊕x | S • Q)
provided ⊕ is idempotent

Set Theory

The set theoretic symbols ∈, =, ⊆, are defined as follows.

Axiom, Set Membership: F ∈ {x | R • E} ≡ (∃x | R • F = E)

Axiom, Extensionality: S = T ≡ (∀x • x ∈ S ≡ x ∈ T)

Axiom, Subset: S ⊆ T ≡ (∀x • x ∈ S ⇒ x ∈ T)

As witnessed by the following definitions, it is the ∈ relation that translates set theory to
propositional logic.

Universe x ∈ U ≡ true
Empty set x ∈ ∅ ≡ false
Complement x ∈ ∼S ≡ x 6∈ S
Union x ∈ S ∪ T ≡ x ∈ S ∨ x ∈ T
Intersection x ∈ S ∩ T ≡ x ∈ S ∧ x ∈ T
PseudoComplement x ∈ S _ T ≡ x ∈ S ⇒ x ∈ T
Difference x ∈ S − T ≡ x ∈ S ∧ x 6∈ T
Power set S ∈ PT ≡ S ⊆ T

The pairs ∅|false, U|true, ∪|∨, ∩|∧, ⊆|⇒, ∼|¬ are related by ∈ and so all equational
theorems of propositional logic also hold for set theory —indeed, that is because both
are Boolean algebras.
→ Set difference is a residual wrt ∪, and so satisfies the division properties below.
→ Subset is an order and so satisfies the aforementioned order properties. It is bounded
below by ∅ and above by U.

The relationship between set comprehension and quantifier notation is:
Set comprehension as union {x | R • P} = (∪x | R • {P})
Membership as inclusion x ∈ S ≡ {x} ⊆ S
Equality as membership x = y ≡ x ∈ {y}

Combinatorics

. Axiom, Size: #S = (Σx | x ∈ S • 1)
Axiom, Interval: m..n = {x : Z | m ≤ x ≤ n}

The following theorems serve to define ‘#’ for the usual set theory operators.

Positive definite #S ≤ 0 ≡ S = ∅
Power set size #PS = 2

#S

Principle of Inclusion-Exclusion #(S ∪ T) = #S + #T − #(S ∩ T)
Monotonicity S ⊆ T ⇒ #S ≤ #T
Difference rule S ⊆ T ⇒ #(T − S) = #T − #S
Complement size #(∼S) = #U− #S
Range size (Σx : U | x 6∈ S • 1) = #U− #S
Interval size #(m..n) = n−m+ 1 for m ≤ n
Pigeonhole Principle (Σi : 1..n • E)/n ≤ (↑ i : 1..n • E)
(“min ≤ avg ≤ max”) (↓ i : 1..n • E) ≤ (Σi : 1..n • E)/n

Rule of sum: #(∪i | R i • P) = (Σi | R i • #P)
provided the range is pairwise disjoint: ∀i, j • R i ∧Rj ≡ i = j.

Rule of product: #(×i | R i • P) = (Πi | R i • #P)

2

Converse —an over-approximation of inverse (A4)

. Co-distributivity ``, Involutive Monotonicity
(x # y)` = y` #x` x`` = x x v y ⇒ x` v y`

Identity Isotonicity Connection Elimination
Id` = Id x v y ≡ x` v y` a` v b ≡ a v b` x` = y` ≡ x = y

Regular Algebra —Residuals, Division

A monoid (τ, _#_, Id) that happens to be a complete lattice and admits factorisation
—i.e., there are operations “under \” and “over /” specified as below— is called a regular
algebra.

Characterisation of / Characterisation of \
a # b v c ≡ a v c/b a # b v c ≡ b v a\c

When # is symmetric, as in the special cases # = u, the divisions coincide: x/y = y\x.

Cancellation (a/b) # b v a a #(a\b) v b
Dividing a division (a/b)/c = a/(c # b) a\(b\c) = (b # a)\c
Division of multiples a v (a # b)/b b v a\(a # b)

Monotonicity of # a v a′ ∧ b v b′ ⇒ a # b v a′ # b′
Subdistributivity of # over u a #(b u c) v a # b u a # c

Numerator monotonicity b v b′ ⇒ a\b v a\b′ b v b′ ⇒ b/a v b′/a
Denominator antitonicity a′ v a⇒ a\b v a′\b a′ v a⇒ b/a v b/a′

Exact division (∃z • y = x # z) ≡ x #(x\y) = y
Exact division (∃z • y = x\z) ≡ x\(x # y) = y

Modal and Dedekind rules: (‘v’ instead of ‘=’ since ‘#’ may not be cancellable)
(Axioms) (Theorems)
a # b u c v a #(b u a` # c) a\b u c v a\(b u a # c)
a # b u c v (a u c # b`) # b a\b u c v (a u c\b)\b
a # b u c v (a u c # b`) #(b u a` # c) a\b u c v (a u c\b)\(b u a # c)

Division for the special case # = u is known the relative pseudo-complement : Denoted
x _ y (“x implies y”), it is the largest piece ‘outside’ of x that is still included in y. The
relative pseudocomplement internalises inclusion, z v (x _ y) ⇒

(
z v x ⇒ z v y

)
;

more generally: x v y ≡ Id v x\y.

Pseudo-complement Semi-complement
x u a v b ≡ x v a _ b a− b v x ≡ a v b t x

Strong modus ponens Absorption
a u (a _ b) = a u b (x t b)− b = x− b
a _ (x u a) = a _ x (a− b) t b = a t b

Division for the special case # = t in the dual order (w) is known as the difference or
relative semi-complement : Denoted x − y (“x without y”), it is the smallest piece that
along with y ‘covers’ x ; i.e., it is the least value that ‘complements’ (“fill up together”) y
to include x. (Possibly for this reason, set difference is sometimes denoted S\T in other
books!)

Named Properties

reflexive x ≡ Id v x
irreflexive x ≡ Id u x = ⊥
transitive x ≡ x #x v x
idempotent x ≡ x #x = x

symmetric x ≡ x` = x
antisymmetric x ≡ x u x` v Id
asymmetric x ≡ x u x` = ⊥

The above properties are preserved by converse: Let P be any of the above properties,
then P x ≡ P (x`).

univalent x ≡ x` #x v Id injective x ≡ x #x` v Id
total x ≡ Id v x #x` surjective x ≡ Id v x` #x
mapping x ≡ totalx ∧ univalentx bijective x ≡ surjectivex ∧ injectivex
iso x ≡ mapping x ∧ bijectivex

Duality theorems

univalent (x`) ≡ injective x
total (x`) ≡ surjectivex
mapping (x`) ≡ bijective x
iso (x`) ≡ iso x

Invertiblility theorems

totalx ∧ injectivex⇒ x #x` = Id
isox ≡ x #x` = Id ∧ x` #x = Id
isox ⇒ (∃g • x # g = Id = g #x)

Shunting laws:
univalent f ⇒ (x # f v y ⇐ x v y # f`)
total f ⇒ (x # f v y ⇒ x v y # f`)
mapping f ⇒ (x # f v y ≡ x v y # f`)

Relations

Relations are sets of pairs . . .

Tortoise x R y ≡ 〈x, y〉 ∈ R
Extensionality R = S ≡ (∀ x, y • x R y ≡ x S y)
Inclusion R ⊆ S ≡ (∀ x, y • x R y ⇒ x S y)
Empty u ∅ v ≡ false
Universe u A×B v ≡ u ∈ A ∧ v ∈ B
Complement u ∼S v ≡ ¬(u S v)
Union u S ∪ T v ≡ u S v ∨ u T v
Intersection u S ∩ T v ≡ u S v ∧ u T v
Difference u S − T v ≡ u S v ∧ ¬(u T v)
PseudoComplement u S _ T v ≡ u S v ⇒ u T v
An Identity u I A v ≡ u = v ∈ A
The Identity u Id v ≡ u = v
Converse u R` v ≡ v R u
Composition u R #S v ≡ (∃ x • u R x ∧ x S v)
Under Division u S\R v ≡ (∀x • x S u⇒ x R v)
Over Division u R/S v ≡ (∀y • v S y ⇒ u R y)

Division generalises extensional subset inclusion and indirect reasoning for orders.
- u is related by ‘R over S’ to v precisely when “anything is R-over u if it is S-over v.”
- u is related by ‘S under R’ to v precisely when “everything S-under u is also R-under v.”

Example: Define E via x E X ≡ x ∈ X, then A E\E B ≡ A ⊆ B.
Example (Indirect inclusion): Define L via x L y ≡ x v y, then L\L = L/L = L.

3

Interpreting Named Properties

We will interpret the named properties using
� Relations: Formulae on sets of pairs; “ ∀x • . . . ”
� Graphs: Dots and lines on a page
� Matrices: 1s and 0s on a grid
� Programs: Transformations of inputs to outputs

Properties of a relationship flavour

The following properties are what one may ascribe to a comparative relationship, such
as equality or inclusion.

reflexive R ≡ (∀ b • b R b)
Every node in a graph has a ‘loop’, a line to itself
(Thus, paths can always be increased in length: R ⊆ R #R)
The diagonal of a matrix is all 1s

irreflexive R ≡ (∀ b • ¬(b R b))
No node in a graph has a loop
The diagonal of a matrix is all 0s

symmetric R ≡ (∀ b, c • b R c ≡ c R b)
The graph is undirected; we have a symmetric matrix

antisymmetric R ≡ (∀ b, c • b R c ∧ c R b ⇒ b = c)
Mutually related nodes are necessarily self-loops
“Mutually related items are necessarily indistinguishable”

asymmetric R ≡ (∀ b, c • b R c ⇒ ¬(c R b))
At most 1 edge (regardless of direction) relating any 2 nodes

transitive R ≡ (∀b, c, d • b R c R d ⇒ b R d)
Paths can always be shortened (but nonempty)

idempotent R ≡ Lengths of paths can be changed arbitrarily (nonzero)
Prog: Outputs fed back into the program don’t change.
Ex: Pressing ‘send’ on an email only sends it once.

Intuitively, by considering the interpretations only, we find

reflexiveR ∧ transitiveR ⇒ idempotentR

Intuitively, by considering the interpretations only, we find a simple graph that is total or
surjective, is necessarily connected: There are no isolated (“forever alone”) nodes.

.

“Relations are simple graphs”

Relations directly represent simple graphs: Dots (nodes) and at most 1 line (edge)
between any two. E.g., cities and highways (ignoring multiple highways).

Treating R as a graph:

R A bunch of dots on a page and an arrow from x to y when x R y
R` Flip the arrows in the graph
DomR The nodes that have an outgoing edge
RanR The nodes that have an incoming edge
x R y A path of length 1 (an edge) from x to y
x R #R y A path of length 2 from x to y
R ∪R` The associated undirected graph (“symmetric closure”)

Properties of an operational flavour

The following properties are what one may ascribe to a process or an operation.

univalent R ≡ (∀b, c, c′ • b R c ∧ b R c′ ⇒ c = c′) —aka “partial function”
Graph: Every node has at most one outgoing edge
Matrix: Every row has at most one 1
Prog: The program is deterministic, same-input yields same-output

injective R ≡ (∀b, b′, c • b R c ∧ b′ R c ⇒ b = b′)
Graph: Every node has at most one incoming edge
Matrix: Every column has at most one 1
Prog: The program preserves distinctness (by contraposition)

total R ≡ (∀b • ∃c • b R c)
Graph: Every node has at least one outgoing edge
Matrix: Every row has at least one 1
Prog: The program terminates; has at least one output for each input

surjective R ≡ (∀c • ∃b • b R c)
Graph: Every node has at least one incoming edge
Matrix: Every column has at least one 1
Prog: All possible outputs arise from some input

mapping R ≡ totalR ∧ univalentR —also known as a “(total) function”
Graph: Every node has exactly one outgoing edge
Matrix: Every row has exactly one 1
Prog: The program always terminates with a unique output

bijective R ≡ surjectiveR ∧ injectiveR
Graph: Every node has exactly one incoming edge
Matrix: Every column has exactly one 1
Prog: Every output arises from a unique input

iso R ≡ mappingR ∧ bijectiveR
Graph: It’s a bunch of ‘circles’
Matrix: It’s a permutation; a re-arrangement of the identity matrix
Prog: A non-lossy protocol associating inputs to outputs

4

